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* Question: what is the output of an LTI system when the input is a
complex exponential ? x[n]= e’

— < N<+0

2

400 +90

ynl= > x[nlh[n-k]= f] Wkx[n—k]= f hkle™™"™ = > hlkle ™™ = H(ef” )ej“’”

k=—o0

f=—x

— Answer: it's the complex exponential possibly modified in magnitude and
phase according to the frequency response of the LTI system.

— Note: this result reveals that ei*" is an eigen function of the LTI system and
that H(el®) is the eigen value of the system at the angular frequency o radians.

 Definition of the frequency response of an LTI system

(obtained by computing the Fourier transform of its impulse response)

H(ejw )i i h[n]e—jam _ ‘H(ejw }ejﬂ{(eﬂ")

n=—00

— |H(e®)] — absolute value of the frequency response of the system

— ZH(el®*) — phase of the frequency response of the system ,
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Frequency-domain representation of discrete signals & systems

— Example: what is the response of an LTI system, with h[n] real, to the input
X[n]=Acos(wgh+d) ?

: : AT i e
— Answer: x[n] may be expressed in a convenient way: x[n]= E[ej (mtd) 4 g (“0”*‘”]

and then:
ylnl= g [H(ejmo )ej(mon+¢) + H(emo )ej(momm ] = A‘H(ef‘”0 ] cos[a)on +P+ AH(e”'“’0 )]

— Important property of H(el®)
given the periodicity of the discrete complex exponential, el*", the frequency
response H(e®) is periodic with period 2r, so that in order to characterize it
completely, it is sufficient to represent the magnitude and phase considering a
frequency span of 2r radians, e.g., between -t and +x or 0 and 2x.

— Example: what is the frequency response of a moving-average filter of length 5 ?

1/5

g 1/S 0sn<4 {HH
)= 0 outros ...:

3-2-10 1 2 3 4 n
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— Answer: using the definition of the time-discrete Fourier transform:

H(e) ¢

1-e’” 5 @

7‘]’5(.) Sil’l — )
— le—j,?(o 2 — ‘H(ejm ]ejé}—[(e}o)

sIn —
2

- -4/ -27/5

2n/5 4r/5 +m1

© AJF

%

+1

v

NOTE 1: the magnitude function is even.
NOTE 2: the phase function is odd.

Question 1: why is that
ZH(e®) # 20 ?
(note that -1=¢47)

Question 2: why is that in this
representation of ZH(el®) we
say that the phase is wrapped ?

(what 1s the fundamental period
in the representation of phase ?)
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X[n] = L TX(ejm kj(o”da) < F > X(ej(v)): ’X(ej(,) }ejéX(ejw) _ i x[n]e‘f‘m

-7 n=—auww

» the Fourier transform of a discrete-time signal x[n] is periodic with period
21 and exists if x[n] is absolutely summable

» the inverse Fourier transform allows to synthesize x[n] using a period of
its representation in the frequency domain

N

S

o — Example:

[\

al F A +o0 A +c0 A 1
— _ n P o Jo ) __ n_—jon __ —]@ _

5 x[n]l=a u[n]‘ < > X(e )—Za ¢ —Z(ae T_l—ae_j("
QE) n=0 n=0 A

a

: )

)

= if laede| <1 - <1
A if |ae7®| S al

[al

=)

88}

-
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Fourier representation of a discrete sequence

« Example: what is the impulse response of an ideal low-pass filter ?

Hpp(e)

»

@,

%
—_—
®Q
~.
2
S—
S

hpp[n]

1 ¢ o\ o 1 o sin ne
> hPB[n]=_J‘HPB(€JO)€Wda)=— Ie’”’dco: -
2r 7 27 = nr
O)C/TC -o<n<-+oo
Lo}
-3 )
o)

NOTE: hpg[n] consists of an IIR non-
causal system that is not realizable !

Sy C????c$llicz

_10123IcLll$oiIiﬂoEI33°£i_:;Il

NOTE+: the response hpg[n] is not absolutely summable, but its square is summable, which

highlights the fact that a filter resulting fom hpg[n] by limiting its length, is the best

© AJF

approximation, in the mean-square sense, to HPB(ejm) (i.e. to the ideal filter). 6
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— special cases

Fourier representation of a discrete sequence

these are special cases because they are neither absolutely summable nor
square-summable, they arise from the theory of generalized functions but they
are very important in the analysis of signals and discrete-time systems:

* tfrain of impulses

unitary
impulses o0 ™
\ Y ln—11
1
32 101 23 4 n-

* unitary complex exponential

eja)on

e unitary step

y 3

F

A 4

uln]

Y 228(er+ k27)
k=—w

21

Dirac
impulses

/

BN

A4r 2n 0 2m 4nm 6m 8¢

Z 2r6(w—w, +k2r)
k=—w

1
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fr=—w
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Symmetry properties of the time-discrete Fourier transform

— given x[n] , we may express X[n]=x.[n]+X,[n] where:

x.[n] = %(x[n] P

« X.[n] is the conjugate symmetric sequence of x[n]; in case x[n] is real,
X,[N] is also known as the even component of x[n] since X [N]= X [-N]

x,[1] = %(x[n] —x[n])= —x[-n]

* X,[n] is the conjugate anti-symmetric sequence of x[n]; in case x[n] is real,
X,[Nn] is also known as the odd component of x[n] since X [N]= -X,[-N]

— similarly, X(el®) = X (el®) + X (el*)

)= 3l exle -l )

« X (el®) is the conjugate symmetric function of X(el®), X (el*) is also said
the even component of X(el) when X(e®) is real-valued

x, ()= [xler)-xo e - )

[ o

« X, (el®) is the conjugate anti-symmetric function of X(el®), X (el*) is also
said the odd component of X(el®) when X(el®) is real-valued 8
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2, e

x[n] | x°(e)

-] | X[

sR{x[n]} @ conjugate symmetric part of X(el*)

J3 {x [n } X, e’ ) conjugate anti-symmetric part of X(e!®)
x,[n] KX (e’ “ }‘
x |n] ]S{X(e”’ )}

xmp __F

(real-valued)

> X(°)=Xy(e?) HjX5(e)= X (e7)
i.e. the transform is conjugate symmetric :
Xm(ej(o):Xm(e—jm)

Xole”) oo )=, )
) el
: /Xl )=-zxle®) 9




F é\ S Review of the main Fourier transform theorems

(relate operations involving discrete sequences and the corresponding operations in the Fourier domain)

F

x[n], y[n] < > X(e°), Y(e)
linearity ‘ax[n] + by[n] ‘ aX (ej“’ )+ bY (e"“’ )
shift in n xn—n,] e’ X (eﬂo) n, inteiro
shift in © e x{n] xleto ]
‘time’ reversal X[-n] X(e7®
: Do dx(e) why is there no
ifferentiation in ® nx[n . e
§ ) ]d’w “differentiation” in n ?
o) convolution X[n]* y[n] x(e”)-y(e')
£ o ;
b 1 0 [(w-0)
g g product X[n]-yin] EJ‘X (ej )Y(ej )d@ (periodic convolution)
:éo ?.3 +0 1 Vg
— 2 * r . « -
7 g Parseval theorem 271yl = [ x(e (e Mo
S & n=—o 2r ¥
. 2
S 5 Parseval theorem = — ||X (ef”] do
g 2 ( rticul ) 27 °
=5 particular case ——
e B energy energy spectral density 10
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Tabela de pares de Fourier

a'uln], la<1  xm]

F

o[ n]
oln—n,]

ié’[n—ﬁ]

uln)

(n+Da"uln], |d<1
I, 0<nM

0, Outros
cos(w,n+ @)
sin ne,

nr

' +1
pr 20 a.)P(n )u[n], <1
sin @,

- |
> X(e?) S
l1—ae™”
1
e—fﬂ””o
i 20 (w +k2m)
r—

Z 2n0(w —w, +k2r)
I\. —Q0

] i
—+ ) 76 (w+k27)

l-e /e k=—o

-ae :

sin(M+1)2
2 7

e,
sin —
2

T Z [emé(a) —w, +k2m)+e 7?5 (w + o, + k27r)]
f=—w

1,

0| <,
0, o. <|a)‘ <7

1/(1-2rcoswpe @ +r2e )
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Question: what is a practical way to find the inverse Fourier transform ?

1

- Example: X(¢’%)=

(1—ae’*)1-be ')

, causal

F

-

<

» X[n]=?

M

[Ta-ce™)
if M<N and poles are first-order, then: X (e’”) =
[Ta-d.e)
. . k=1
with : 4, =(1-de /)X (e")|,.0_,
(l—ae’”")(l—be’”’) 1-ae” 1 be ’?

which leads to: x(n) =

f b a"u[n]+ bib”u[n]

ﬂ

ﬂ

Not to forget !
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 the DTFT of the auto-correlation
the auto-correlation is defined as (in this discussion, we admit energy signals)

+ 00

r.[6] = x[£] * x*[—£] = Z x[k] x* [k — £]

k=—o0

considering the DTFT properties

x[#] N X(e/®)
F .
x°[f] ——  X*(e7)
F .
x[—f] X(e‘f‘“)
F .
2~ ——  X"(e/)
then

rlf] = x[f] s x'[-€] —— R,(e/®) = X(e/®) - X*(e/®) = |X(e/®)[*

Where R, (e/®) = |x(e/@)|" is called the spectral density of energy
© AJF 13
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The DTFT of the auto-correlation and of the cross-correlation

— the Wiener-Khinchine Theorem: the auto-correlation and the spectral
density of energy form a Fourier pair

Rl o Ry(el®) = |x(ef)|’

thus,

T

1 . .
e [f] = - R(ef“)) e/’dw

[

and, in particular, the energy of the signal can be found using

T

VIA

+oo 1 | 1 o

E =1,[0] = Zkz_oolx[/’\f]l2 = R(e/?)dw = - f|X(e’w)| dw
—TT —TT

which reflects the Parseval Theorem

14
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The DTFT of the auto-correlation and of the cross-correlation

the DTFT of the cross-correlation
the cross-correlation is defined as (we admit energy signals)

+ 00

oyl = x[€] Y [=€] = > x[k] y*[k = 4]

k=—o0

considering the DTFT properties

x[#] N X(e/®)
F .
y[¢] — Y(e/?)
F .
vl = Yi(e®)
F .
y[-f] —— Y(e7?)
F .
Y[ — Y (/)
then

Teyl€] = x[£] * y*[—£] <i> ny(ej‘”) = X(ej‘”) . Y*(ej‘”)

15
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 examples

let us admit two discrete-time signals, x[n] and y[n]

y[n] 3

x[n] 3
s 1]
O 1 2 0 2

n 1

v

it can be easily concluded that

F . ) .
x[?] = 36[€] + 26[¢ — 1]+ 6[f — 2] «—— X(ef“)) =3 4+ 27 J®W 4 p7J2W

F . . ]
y[ﬁ] = d[f] + 25[‘£ - 1] + 35[‘3 - 2] — Y(e]w) =1+ 20 W + 36_]20)

R.(e/%) = 3e/2% + 8e/® + 14 4+ 8e /¥ + 3¢ /2% = R ,(e/®), (why ?)

ny(ejw) = 9¢J2® 4 12eJ% + 10 + 4e 7@ 4 ¢7J2®
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