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Summary

• Frequency-domain representation of discrete signals and systems

– Response of an LTI system to a complex exponential

– Fourier representation of a discrete-time sequence

• A Review of the discrete-time Fourier Transform (DTFT)

– Symmetry properties of the Fourier Transform

– Theorems regarding the Fourier Transform

– Table of Fourier pairs

• The DTFT of the auto-correlation and of the cross-correlation

– the DTFT of the auto-correlation

– the DTFT of the cross-correlation

– examples
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• Question: what is the output of an LTI system when the input is a 

complex exponential ?

– Answer: it’s the complex exponential possibly modified in magnitude and 
phase according to the frequency response of the LTI system.

– Note: this result reveals that ejn is an eigen function of the LTI system and 
that H(ej) is the eigen value of the system at the angular frequency  radians.

• Definition of the frequency response of an LTI system 
(obtained by computing the Fourier transform of its impulse response)

– |H(ej)|    absolute value of the frequency response of the system

– H(ej)    phase of the frequency response of the system

Frequency-domain representation of discrete signals & systems
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Frequency-domain representation of discrete signals & systems

– Example: what is the response of an LTI system, with h[n] real, to the input 
x[n]=Acos(0n+) ?

– Answer: x[n] may be expressed in a convenient way:

and then:

– Important property of H(ej)

given the periodicity of the discrete complex exponential, ejn, the frequency 
response H(ej) is periodic with period 2, so that in order to characterize it 
completely, it is sufficient to represent the magnitude and phase considering a 
frequency span of 2 radians, e.g., between - and + or 0 and 2.

– Example: what is the frequency response of a moving-average filter of length 5 ?

-3 -1 1 2 3 n-2 0

1/5

……

4
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– Answer: using the definition of the time-discrete Fourier transform:

-


+-2/5 2/5 4/5-4/5

1

|H(ej)|

-

+-4/5



H(ej)

4/5

-4/5

-3/5

3/5

4/5

-

NOTE 1: the magnitude function is even.

NOTE 2: the phase function is odd.

Question 1: why is that

H(ej)  -2 ?

(note that -1=e±j)

Question 2: why is that in this
representation of H(ej) we
say that the phase is wrapped ?

(what is the fundamental period
in the representation of phase ?)

Frequency-domain representation of discrete signals & systems
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Fourier representation of a discrete sequence

F

• the Fourier transform of a discrete-time signal x[n] is periodic with period 
2 and exists if x[n] is absolutely summable

• the inverse Fourier transform allows to synthesize x[n] using a period of 
its representation in the frequency domain

– Example:

F

if |ae-j| < 1    |a| < 1
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• Example: what is the impulse response of an ideal low-pass filter ?

-2


2c
-

1

HPB(ej)

-c


F

- < n < +

-4 -1 1 2 3 n0 4

c/

……

NOTE: hPB[n] consists of an IIR non-
causal system that is not realizable !

NOTE+: the response hPB[n] is not absolutely summable, but its square is summable, which

highlights the fact that a filter resulting fom hPB[n] by limiting its length, is the best

approximation, in the mean-square sense, to HPB(ej) (i.e. to the ideal filter).

hPB[n]

Fourier representation of a discrete sequence
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– special cases

these are special cases because they are neither absolutely summable nor 
square-summable, they arise from the theory of generalized functions but they 
are very important in the analysis of signals and discrete-time systems:

• train of impulses

• unitary complex exponential

• unitary step

F

-3 -1 1 2 3 n-2 0

1

……

4 -2 2 4 6 -4 0

2

…

8

unitary

impulses

Dirac

impulses

F

F

…

Fourier representation of a discrete sequence
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Symmetry properties of the time-discrete Fourier transform

– given x[n] , we may express x[n]=xe[n]+xo[n] where:

• xe[n] is the conjugate symmetric sequence of x[n]; in case x[n] is real, 

xe[n] is also known as the even component of x[n] since xe[n]= xe[-n] 

• xo[n] is the conjugate anti-symmetric sequence of x[n]; in case x[n] is real, 

xo[n] is also known as the odd component of x[n] since xo[n]= -xo[-n] 

– similarly, X(ej) = Xe(e
j) + Xo(e

j)

• Xe(e
j) is the conjugate symmetric function of X(ej), Xe(e

j) is also said 
the even component of X(ej) when X(ej) is real-valued

• Xo(e
j) is the conjugate anti-symmetric function of X(ej), Xo(e

j) is also 

said the odd component of X(ej) when X(ej) is real-valued
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Main symmetry properties of the time-discrete Fourier transform

Fx[n]
(complex)

X(ej)

conjugate symmetric part of X(ej)

conjugate anti-symmetric part of X(ej)

Fx[n]
(real-valued)

X(ej)=X(ej) +jX(ej)= X*(e-j)

i.e. the transform is conjugate symmetric :
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Review of the main Fourier transform theorems

F
x[n], y[n] X(ej), Y(ej)

linearity

(relate operations involving discrete sequences and the corresponding operations in the Fourier domain)

shift in n

shift in 

‘time’ reversal

differentiation in 
why is there no

“differentiation” in n ?

convolution

product

Parseval theorem

Parseval theorem

(particular case)

(periodic convolution)

energy spectral densityenergy

nd inteiro

=

=
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Tabela de pares de Fourier

F
x[n] X(ej)

1

example:
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Question: what is a practical way to find the inverse Fourier transform ?

• Example:                                              , causal
F

x[n]= ?

if M<N and poles are first-order, then:

with :

and thus:

which leads to: 

Not to forget !
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The DTFT of the auto-correlation and of the cross-correlation

• the DTFT of the auto-correlation
the auto-correlation is defined as (in this discussion, we admit energy signals)

�� ℓ = � ℓ ∗ �∗ −ℓ = � � �  �∗ � − ℓ
��

����

considering the DTFT properties

� ℓ      
     ℱ     

      � ���

�∗ ℓ      
     ℱ     

      �∗ ����

� −ℓ      
     ℱ     

      � ����

�∗ −ℓ      
     ℱ     

      �∗ ���

then

�� ℓ = � ℓ ∗ �∗ −ℓ      
     ℱ     

     �� ��� = � ��� � �∗ ��� = � ��� �

Where �� ��� = � ��� �
 is called the spectral density of energy
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The DTFT of the auto-correlation and of the cross-correlation

• the DTFT of the auto-correlation (cont.)
– the Wiener-Khinchine Theorem: the auto-correlation and the spectral 

density of energy form a Fourier pair

�� ℓ      
     ℱ     

     �� ��� = � ��� �

thus,

�� ℓ =
1

2�
� � ���  ���ℓ��

�

��

and, in particular, the energy of the signal can be found using

� = �� 0 = � � � �
��

����
=

1

2�
� � ��� ��

�

��

=
1

2�
� � ��� �

��

�

��

which reflects the Parseval Theorem
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The DTFT of the auto-correlation and of the cross-correlation

• the DTFT of the cross-correlation
the cross-correlation is defined as (we admit energy signals)

��� ℓ = � ℓ ∗ �∗ −ℓ = � � �  �∗ � − ℓ
��

����

considering the DTFT properties

� ℓ      
     ℱ     

      � ���

� ℓ      
     ℱ     

      � ���

�∗ ℓ      
     ℱ     

      �∗ ����

� −ℓ      
     ℱ     

      � ����

�∗ −ℓ      
     ℱ     

      �∗ ���

then

��� ℓ = � ℓ ∗ �∗ −ℓ      
     ℱ     

     ��� ��� = � ��� � �∗ ���
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The DTFT of the auto-correlation and of the cross-correlation

• examples

let us admit two discrete-time signals, � � and y �

it can be easily concluded that

� ℓ = 3� ℓ + 2� ℓ − 1 + � ℓ − 2     
     ℱ     

    � ��� = 3 + 2���� + �����

� ℓ = � ℓ + 2� ℓ − 1 + 3� ℓ − 2    
     ℱ     

   � ��� = 1 + 2���� + 3�����

�� ��� = 3���� + 8��� + 14 + 8���� + 3����� = �� ��� ,  (why ?)

��� ��� = 9���� + 12��� + 10 + 4���� + �����

1 20

1

3

2

� �

� 1 20

1

3

2

y �

�


