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Summary

• Sampling and reconstruction of continuous signals

– Introduction

– Periodic sampling of continuous-time signals

– Frequency domain analysis of periodic sampling

– Reconstruction of continuous-time signals from samples

• Ideal reconstruction

• Zero-order real reconstruction

– Discrete-time processing of continuous-time signals
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Sampling of continuous-time signals

• Introduction

– most discrete-time signals result from sampling (i.e. discretization in time) 
of continuous-time signals

– under certain conditions, a discrete-time signal may be an exact 
representation (i.e. there is no loss of information) of a continuous-time 
signal

– any form of processing of a continuous-time signal may be realized in 
the discrete domain, which requires the sampling of the continuous-
time signal before processing, and the reconstruction of the 
continuous-time signal from samples after the processing stage
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• Introduction (cont.)

– is discrete-time processing preferable to analog processing ?

– e.g. is there any non-trivial analog filter with exact linear phase ? (but 

easy to realize using a discrete-time system…)

+
-

R1 R2

C1

C2

LPF Discrete processingA/D LPFD/A

“anti-aliasing”

filter

anti-imaging

filtersampling reconstruction

Sampling of continuous-time signals
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• Context

– minimal structure for the discrete-time processing of analog signals:

– in the following we admit that the sampling rate is constant and that 
the A/D and D/A converters have infinite resolution (i.e., no quantization 

errors)

– QUESTION: in the absence of discrete-time processing, i.e., if 
y[n]=x[n], and admitting ideal A/D and D/A converters, under which 
conditions is it possible to sample and reconstruct an analog signal 
without loss of information, i.e., such that y(t)=x(t) ?

LPF A/D Discrete system D/A + S/H LPF
x(t) y(t)

x[n] y[n]

t

x(t)

n

x[n]

t

y'(t)

n

y[n]

t

y(t)

Sampling of continuous-time signals
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– in order to answer the previous question, we analyze two 
fundamental steps in the represented block diagram : the time 
discretization of the continuous-time signal by means of a periodic 
sampling (continuous-time signal  discrete-time signal conversion) and 
the time reconstruction of the continuous-time signal from samples 
(discrete-time signal  continuous-time signal conversion) 

• periodic sampling

T: sampling period (sec.)

1/T: sampling frequency (Hertz)

s=2/T: angular sampling frequency (radians/seg.)

– NOTE: this operation is only invertible  (i.e., the ambiguity is avoided of two different 

signals giving rise to the same discrete signal) if xc(t) is constrained.

t

xc(t)

t

xa(t)

T0-T 2T 3T 4T 5T n

x[n]

10-1 2 3 4 5

Sampling of continuous-time signals
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– time discretization: how to relate X(ej) and Xc() ?

and also:

thus:

A/D
xc(t) x[n]

s(t)

xc(t) x[n]= xa(nT)

s(t)

XC() Xa()

• • • • • •

-2T -T 0 T 2T t

1

• • • • • •

-4/T -2/T 0 2/T 4/T 

2/T

F

Frequency domain analysis of periodic sampling

F

F
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 The previous result says that except for a scale factor and a 
normalization (by 1/T) of the frequency axis (making that the “analog” 
frequency k2/T=ks be projected in the “digital” frequency k2, for any 

integer K) the spectra X(ej) and Xa() are similar. It also says that, as  
result of ideal sampling, the spectrum of the continuous-time signal 
appears replicated at all multiple integers of the sampling frequency.



1

Xc()

Max-Max

• • • • • •

2/T 4/T 

Xa()

-2/T 0

/T

1/T

-/T

• • • • • •

2 4 

X(ej)

-2 0



1/T

-

Max

TMax

Nyquist frequency

Frequency domain analysis of periodic sampling
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The Nyquist sampling theorem

– in order to avoid spectral overlap (i.e., aliasing) between replicas of the base-
band spectrum, it must be ensured that :

MAX < /T= S/2  2FMAX < FS  FS  > 2FMAX

– this means that the bandwidth of the base-band signal must be limited to less 
than half the sampling frequency. This condition is typically enforced by a low-
pass filter just before the A/D converter, thus named “anti-aliasing” filter.

– if this condition is guaranteed, as the illustration suggests, it is possible to 
recover Xc() from X(ej), using an ideal low-pass continuous-time filter, with 
gain T and cut-off frequency MAX < p < S -  MAX

these aspects reflect the Nyquist sampling theorem:

– is xc(t) is a band-limited signal such that Xc() =0 for || > MAX, then xc(t) is 
uniquely determined (i.e. may be unambiguously reconstructed) from its samples 
x[n]=xc(nT) with S=2/T > 2MAX

NOTE: S/2=/T is commonly known as the Nyquist frequency.

Frequency domain analysis of periodic sampling
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 what if the sampling condition is violated, i.e., if FS < 2FMAX ?

Answer: there is spectral overlap ( “aliasing” ) distorting the signal, and preventing 
the recovery of the original spectrum after low-pass filtering.



1

Xc()

Max-Max

• • • • • •

2/T 4/T 

Xa()

-2/T 0 /T

1/T

-/T

• • • • • •

2 4 

X(ej)

-2 0 

1/T

-

Frequency domain analysis of periodic sampling
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example: case of a continuous-time signal (co-sinusoidal function) correctly and 
incorrectly sampled



Xc()

0-0





Xc()

0-0



• • • • • •

S
2S

Xa()

-S
0 0-0 

• • • • • •

S
2S

Xa()

-S
0 0-0 

xc(t)=cos(0t)  , 0 < S/2  there is no “aliasing”

xc(t)=cos(0t)  , 0 > S/2  there is “aliasing”

recovered signal after low-pass filtering, with cut-off at S/2 : xc(t)=cos(0t)

recovered signal after low-pass filtering, with cut-off at S/2 : xc(t)=cos[(S-0)t]

Frequency domain analysis of periodic sampling
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Reconstruction from samples

• Case 1: ideal reconstruction

– as can be concluded from the spectral representation of Xa() (’slide’ nº 

7), if we preserve solely the base-band replica after low-pass filtering, 
then it is possible to recover the spectrum Xc(); the same is to say: it 
is possible to recover xc(t). This is the principle which we will illustrate 
next using y[n].

• • • • • •

-2 -1 0 1 2 n

• • • • • •

-2T -T 0 T 2T t

• • • • • •

-2T -T 0 T 2T t -/T /T 

D/A
y[n] ya(t)

s(t)

ideal

reconstruction

filter

yc(t)

hr(t)

ya(t)

s(t)

*

hr(t)

yc(t)y[n]

t

• • • • • •

-2T -T 0 T 2T



12

F
un

d
am

en
ta

ls
 o

f 
S

ig
n

al
 P

ro
ce

ss
in

g,
 w

ee
k 

3
F

E
U

P
-D

E
E

C
, 

N
ov

em
b

er
 0

2,
 2

02
1

© AJF

The first step going from the discrete-time domain to the continuous-time 
domain involves placing the pulses of the discrete sequence y[n] at 
instants uniformly distributed in time, thus obtaining ya(t). It should be 
noted that this signal has the same spectrum of xa(t) since we presume 
that y[n]=x[n].

By submitting the continuous-time signal ya(t) to an ideal low-pass filter 
having impulse response hr(t), gain T and cutting-off frequency at /T:

we obtain:

F

hr(t)

-T T t2T-2T

1

Hr()

-/T /T 

T

F

Reconstruction from samples
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This result reveals that:

• at the sampling instants yc(nT)=y[n]=x[n]=xc(nT), given that all sinc
functions in the summation are zero, except one (that centered at t=nT) whose 
value is ‘one’,

• at intermediary instants, the continuous-time signal results from the sum of 
all sinc functions, i.e. the filter hr(t) implements an interpolation using all 
values of y[n]

using frequency-domain analysis, and considering y[n]=x[n] which 
implies: 

It can be concluded that the result of filtering is:

which means that, considering ideal conditions and the Nyquist criterion, it is 
possible to reconstruct the continuous-time signal from its samples, without loss 
of information. Question: the reconstruction filter is also known as anti-imaging 
filter, why ?

• • •

• • •

-2T -T 0 T 2T t

yc(t)

F

Reconstruction from samples
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• Case 2: zero-order real reconstruction
– real electronic devices, in particular D/A converters, do not operate using pulses but use 

instead more physically tractable signals such as boxcar function approximations. Let us 
consider the case closest to reality where the D/A converter is associated with a “sample-
and-hold” device that ‘retains’ the value of a sample during a sampling period, giving rise to 
a staircase-like signal:

t-T/2 T/2

y[n]

D/A + S/H

s(t) p(t)

yr(t)
reconstruction filter

ideal -compensated

yc(t)

hr(t)

ya(t)

s(t)

*

p(t)

yr(t)y[n]

*

hr(t)

yc(t)

• • • • • •

-2 -1 0 1 2 n

• • • • • •

-2T -T 0 T 2T t t

• • • • • •

-2T -T 0 T 2T

• • • • • •

-2T -T 0 T 2T t

ya(t) yr(t) yc(t)y[n]

• • • • • •

-2T -T 0 T 2T t -/T /T 

Reconstruction from samples
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as considered before:

and for the boxcar function of width T:

and therefore yr(t) results as:

F

F

F

Reconstruction from samples
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whose spectral representation is:

from where it can be concluded that the zero-order reconstruction distorts the 
Y(ejT) spectrum in a way that can be compensated for, if we consider the 
base-band replica which is the one we want to recover; in addition, all other 
replicas which we want to eliminate, are strongly attenuated which alleviates 
the filtering effort of hr(t).

• • • • • •

2/T 4/T -2/T 0

/T

1/T

-/T

Y(ejT)

Max

P()T

• • • • • •

2/T 4/T -2/T 0

/T

-/T

Yr()

Max

1

Reconstruction from samples
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The filter hr(t) must then not only reject the undesirable spectral images, but also 
compensate the magnitude distortion affecting the base-band replica :

presuming also that y[n]=x[n], then:

and:

subject to the condition that filter Hr() is low-pass, with cut-off frequency at /T, 
but is also compensated such as to reverse the sin(x)/x distortion, i.e. :

F

Reconstruction from samples
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Then, it results graphically:

which means the output of hr(t) is also given by:

as we have already concluded before.

NOTE 1: the compensation sin(x)/x may be inserted at any stage of the processing, including 
(and perhaps preferably ! ) at the discrete processing stage, with all the known advantages.

NOTE 2: in addition to the ‘zero-order’ reconstruction, there are other possibilities (e.g. the 

‘one-order’ reconstruction) !

Yc()



1

Max-Max



1

Hr()

-/T

/2

/T



• • • • • •

2/T 4/T -2/T 0

/T

-/T

Yr()

Max

ideal filter

real filter

Reconstruction from samples



19

F
un

d
am

en
ta

ls
 o

f 
S

ig
n

al
 P

ro
ce

ss
in

g,
 w

ee
k 

3
F

E
U

P
-D

E
E

C
, 

N
ov

em
b

er
 0

2,
 2

02
1

© AJF

Discrete-time processing of continuous-time signals

– In our previous analysis we have admitted y[n]=x[n], i.e., absence of 
discrete-time processing so as to show the possibility of sampling and 
reconstruction an analog signal. It is important to assess now the 
impact on the analog signal of a discrete-time processing as this is the 
most common scenario:

– Although it is possible/desirable to design systems where the A/D 
sampling frequency is different from the D/A sampling frequency, (e.g.

that is the case of oversampling that is used in CD/MP3 players), we admit in 
this analysis that both are equal.

Discrete ProcessingA/D D/A

xc(t) yc(t)x[n] y[n]

T1 T2
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Discrete-time processing of continuous-time signals

– If the discrete-time system is LTI and is characterized in the frequency 
by H(ej), then:

but since:                             which means:

We have also seen that considering for example zero-order 
reconstruction, then:

and we obtain finally:

we may thus conclude that:

• if the ‘anti-aliasing’ filter at the input of the system enforces Xc()=0  for  
||>/T (or if xc(t) possesses already this property), then there is no overlap of 
spectral images in the summation

• if the reconstruction filter eliminates spectral images for ||>/T  and 
ensures sin(x)/x compensation, then the previous expression simplifies to:
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Discrete-time processing of continuous-time signals

– we may finally conclude that if the discrete-time system is linear and 
time-invariant, from the input to the output of the system all happens 
as if there is an analog processing characterized by Heff(), whose 
relation to discrete-time processing is:

Example: continuous-time low-pass filtering by means of a discrete-time filter

given the filter:                                            whose frequency response is 

-periodic, with period 2 :

• • • • • •

2 4 -2 0 -

H(ej)

p
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Discrete-time processing of continuous-time signals

then:

A few reasons justifying that this analog filter implemented in the discrete-time 
domain may be preferable:

• as the cut-off frequency p=p/T depends on T, using the same system, we may vary the effective 
analog cut-off frequency (i.e., we have adjustable filters), by acting solely on the sampling frequency (1/T),

• when we need a filter with demanding specifications, involving for example very narrow transition 
bands, or high stop-band attenuation, or many bands with different gains and attenuations; its 
realization in the analog domain is difficult, probably very expensive, and highly dependent on the 
characteristics of the analog components, and in any case it will show a strongly non-linear phase 
response. Moving that filtering effort to the discrete-time domain eliminates almost completely these 
inconveniences. A specific case where that is true involves A/D and D/A operations, that require, 
respectively, “anti-aliasing” and “anti-imaging” filters, both low-pass. The analog filter specifications 
are ‘alleviated’ (and in certain cases no analog filtering at all is needed) transferring most of the filtering effort 
to the discrete/digital domain although requiring a significant increase of the sampling frequency. In 
the first case, (i.e. after A/D conversion), decimating digital filters are used and in the second case (i.e.

before D/A conversion), interpolating digital filters are used. We will return to these topics later on ! 

• • • • • •

2/T 4/T -2/T 0-/T

Heff()

p


