

Sumário

- Estruturas de realização de sistemas discretos
 - Introdução
 - representação em diagrama de blocos de equações às diferenças
 - estrutura direta tipo I de realização de sistemas IIR
 - estrutura direta tipo II de realização de sistemas IIR
 - estruturas em cascata para a realização de sistemas IIR
 - estruturas em paralelo para a realização de sistemas IIR
 - estruturas transpostas
 - estruturas de realização de sistemas FIR
 - estruturas de realização de sistemas FIR de fase linear

Introdução

- como visto em aulas anteriores, há três formas equivalentes de caracterizar um sistema discreto linear e invariante em n:
 - resposta impulsional
 - função de transferência (i.e., transformada em Z da resposta impulsional)
 - equação linear às diferenças com coeficientes constantes

Questão: quais destas são formas "completas" de caracterização ? (assumiremos como pressuposto que lidamos só com sistemas causais, isto é, x[n]=0 para n<0, e y[n]=0 para n<0)

- a equação linear às diferenças exprime diretamente o algoritmo de implementação de um sistema discreto e, por isso, é a forma que mais facilita a identificação (direta) da estrutura de realização associada,
- tipicamente, para um dado sistema discreto caracterizado por uma função de transferência racional, há uma grande variedade de estruturas de realização que implementam esse sistema (i.e. fornecem a mesma saída y[n] para uma mesma entrada x[n]) se a precisão numérica da representação de coeficientes e variáveis for infinita; quando esta é finita, o comportamento das diferentes estruturas pode diferir significativamente (o que justifica o seu estudo)

- Representação em diagrama de blocos da equação às diferenças
 - uma estrutura de realização de um sistema discreto consiste na ilustração, em diagrama de blocos, de um algoritmo computacional
 - na forma mais geral, uma equação linear às diferenças e com coeficientes constantes, traduz um algoritmo recursivo de cálculo
 - tipicamente, uma estrutura de realização de um sistema discreto interliga entradas (atual e atrasadas), saídas (atual e atrasadas) e sequências intermédias relevantes, através de elementos básicos de multiplicação de sequências por coeficientes e de soma de produtos parciais ou sequências
 - ilustram-se as operações básicas de adição, multiplicação por uma constante e atraso:

$$x_1[n] \xrightarrow{x_2[n]} x_1[n] + x_2[n] \qquad x[n] \xrightarrow{a} ax[n] \qquad x[n] \xrightarrow{x[n-m]} Z^{-m} \xrightarrow{x[n-m]}$$

- Estrutura directa do tipo I para a realização de um sistema IIR
 - a equação às diferenças de um sistema LIT, causal e com resposta impulsional infinita, pode ser expressa por:

$$y[n] - \sum_{k=1}^{N-1} a_k y[n-k] = \sum_{\ell=0}^{M-1} b_\ell x[n-\ell]$$

NOTA: esta é uma apresentação especial da formulação usualmente apresentada na literatura:

$$\sum_{k=0}^{N-1} a_k y[n-k] = \sum_{\ell=0}^{M-1} b_\ell x[n-\ell]$$

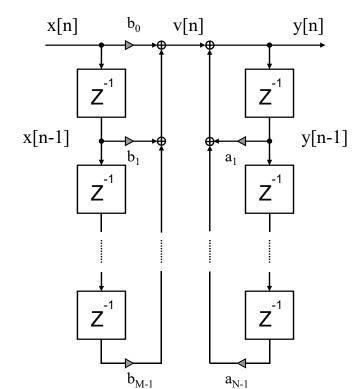
a sua função de transferência é dada por:
$$H(z) = \frac{\sum_{\ell=0}^{M-1} b_{\ell} Z^{-\ell}}{1 - \sum_{k=1}^{N-1} a_{k} Z^{-k}}$$

a apresentação dada (acima) à equação às diferenças é particularmente conveniente porque permite calcular a saída y[n], de forma recursiva, como uma combinação linear das saídas anteriores e das entradas atual e anteriores:

$$y[n] = \sum_{k=1}^{N-1} a_k y[n-k] + \sum_{\ell=0}^{M-1} b_\ell x[n-\ell] = \sum_{k=1}^{N-1} a_k y[n-k] + v[n]$$

 uma vez que a combinação linear das entradas pode ser autonomizada num resultado intermédio v[n], a representação em diagrama de blocos dos cálculos implicados (i.e. do algoritmo) na expressão anterior resulta fácil e diretamente:

esta estrutura corresponde à estrutura direta do tipo I de realização de um sistema IIR e baseia-se na seguinte ordem de cálculos parciais:



QUESTÃO: qual é a ordem de cálculo dos vários produtos parciais?

$$V[n] = \sum_{\ell=0}^{M-1} b_{\ell} x[n-\ell]$$

$$V[n] = \sum_{k=1}^{M-1} a_{k} y[n-k] + v[n]$$

$$V(z) = H_{1}(z) X(z) = \left[\sum_{\ell=0}^{M-1} b_{\ell} Z^{-\ell}\right] X(z)$$

$$Y(z) = H_{2}(z) V(z) = \frac{1}{1 - \sum_{k=1}^{N-1} a_{k} Z^{-k}} \cdot V(z) = H_{2}(z) [H_{1}(z) X(z)]$$

- Estrutura direta do tipo II para a realização de um sistema IIR
 - a função de transferência global H(z) pode assim escrever-se:

$$H(z) = \frac{Y(z)}{X(z)} = H_2(z)H_1(z) = \frac{1}{1 - \sum_{k=1}^{N-1} a_k Z^{-k}} \cdot \sum_{\ell=0}^{M-1} b_\ell Z^{-\ell} = \sum_{\ell=0}^{M-1} b_\ell Z^{-\ell} \cdot \frac{1}{1 - \sum_{k=1}^{N-1} a_k Z^{-k}} = H_1(z)H_2(z)$$

esta última forma revela que Y(z) é também dado, em alternativa, por $Y(z)=H_1(z)[H_2(z)X(z)]=H_1(z)W(z)$, a que se associa a seguinte ordem de cálculos:

$$W[n] = \sum_{k=1}^{N-1} a_k w[n-k] + x[n]$$

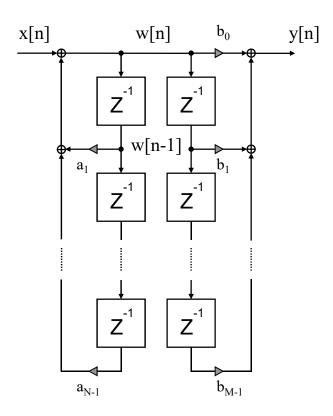
$$y[n] = \sum_{\ell=0}^{M-1} b_\ell w[n-\ell]$$

$$W(z) = H_2(z)X(z) = \frac{1}{1 - \sum_{k=1}^{N-1} a_k Z^{-k}} \cdot X(z)$$

$$Y(z) = H_1(z)W(z) = \left[\sum_{\ell=0}^{M-1} b_\ell Z^{-\ell}\right]W(z)$$

Estruturas de realização de sistemas discretos

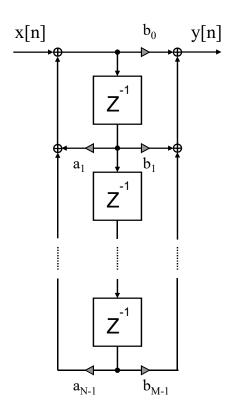
 a representação em diagrama de blocos da sequência anterior de operações é a seguinte:



esta estrutura corresponde à *estrutura direta do tipo II de realização de um sistema IIR* e facilmente se verifica que resulta simplesmente de trocar a ordem dos subsistemas em série na *estrutura direta do tipo I*, o que, dada a propriedade de comutatividade da representação em Z, não modifica o sistema implementado.

Estruturas de realização de sistemas discretos

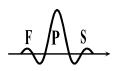
 facilmente se conclui que a estrutura anterior possui duas cadeias de atraso com o mesmo sinal, o que sugere uma simplificação de interesse prático óbvio, ao eliminar-se esta redundância:



NOTA: considerou-se nesta representação que M=N; no caso de M \neq N, alguns dos coeficientes a_k ou b_k serão nulos.

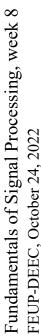
pelo facto do número de "atrasos" desta estrutura não exceder a ordem da função de transferência, diz-se também que se trata de uma estrutura <u>canónica</u>.

QUESTÃO: dados M e N quaisquer, qual é o número mínimo de atrasos requeridos para implementar este sistema ? **R**: MAX(M, N)



em síntese

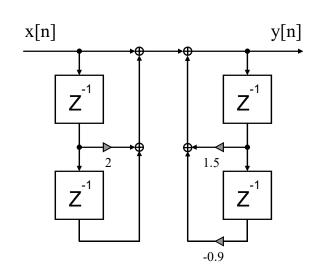
- as estruturas diretas de realização possuem coeficientes multiplicadores iguais aos da função de transferência implementada,
- uma estrutura canónica tem tantos "atrasos" (unitários) quanto a ordem da função de transferência implementada
- a estrutura direta do tipo I implementa em primeiro lugar todos os zeros do sistema e em seguida todos os seus polos,
- a estrutura direta do tipo II implementa em primeiro lugar todos os polos do sistema e em seguida todos os seus zeros,
- se bem que teoricamente a ordem de implementação dos zeros e polos não afecta a função de transferência global do sistema, há diferenças significativas quando se lida com aritmética finita uma vez que, neste caso, a sequência de operações condiciona fortemente a propagação e amplificação de erros de arredondamento e outros,
- é possível usar diferentes algoritmos computacionais para implementar o mesmo sistema discreto, ideia que se reforçará de seguida.



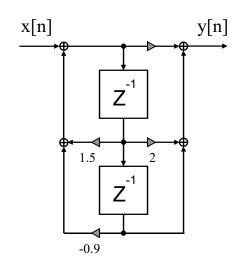
- exemplo
 - representar as estruturas diretas I e II que realizam o sistema causal

descrito por:
$$H(z) = \frac{1 + 2Z^{-1} + Z^{-2}}{1 - 1.5Z^{-1} + 0.9Z^{-2}}$$

Directa Tipo I R:



Directa Tipo II



- Estruturas em cascata para a realização de sistemas IIR
 - as estruturas diretas, vistas anteriormente, resultaram de H(z) expresso como uma razão de polinómios em Z, contudo, se se fatorizarem os polinómios numerador e denominador, que consideraremos serem de coeficientes reais, é possível escrever:

$$H(z) = \frac{\sum_{\ell=0}^{M-1} b_{\ell} Z^{-\ell}}{1 - \sum_{k=1}^{N-1} a_{k} Z^{-k}} = A \frac{\prod_{k=1}^{M_{1}} \left(1 - f_{k} Z^{-1}\right) \prod_{\ell=1}^{M_{2}} \left(1 - g_{\ell} Z^{-1}\right) \left(1 - g_{\ell}^{*} Z^{-1}\right)}{\prod_{r=1}^{N_{1}} \left(1 - c_{r} Z^{-1}\right) \prod_{s=1}^{N_{2}} \left(1 - d_{s} Z^{-1}\right) \left(1 - d_{s}^{*} Z^{-1}\right)}$$

com M-1= M_1+2M_2 e N-1= N_1+2N_2 , os coeficientes f_k e c_r representam, respetivamente, zeros e polos reais simples. Os coeficientes g_ℓ e g_ℓ^* representam pares de zeros complexos conjugados e d_s e d_s^* representam pares de polos complexos conjugados,

 a partir da expressão anterior, é possível estruturar a realização de H(z) como uma série (*i.e.*, cascata) de subsistemas de 1ª e 2ª ordem, sendo desejável, <u>na prática</u>, organizar a cascata de modo a minimizar quer o número de operações aritméticas, quer o espaço de memória requerido (principalmente para as cadeias de atraso).

 a conveniência anterior conduz frequentemente ao uso de subsistemas de 2^a ordem (conhecidos na gíria por "biquads"), através da combinação de pares de zeros reais, de polos reais, de zeros complexos conjugados e de polos complexos conjugados,

a função de transferência global pode então reduzir-se a uma forma modular, de coeficientes reais, de que se dão dois exemplos:

$$H(z) = \frac{\sum_{\ell=0}^{M-1} b_{\ell} Z^{-\ell}}{1 - \sum_{k=1}^{N-1} a_{k} Z^{-k}} = \prod_{k=1}^{N_{s}} \frac{b_{0k} + b_{1k} Z^{-1} + b_{2k} Z^{-2}}{1 - a_{1k} Z^{-1} - a_{2k} Z^{-2}}$$

$$com \ b_{0} = \prod_{k=1}^{N_{s}} b_{0k}, \quad \tilde{b}_{1k} = \frac{b_{1k}}{b_{0k}}, \quad \tilde{b}_{2k} = \frac{b_{2k}}{b_{0k}}, \quad k = 1, ..., N_{s}$$

com
$$b_0 = \prod_{k=1}^{N_s} b_{0k}$$
, $\tilde{b}_{1k} = \frac{b_{1k}}{b_{0k}}$, $\tilde{b}_{2k} = \frac{b_{2k}}{b_{0k}}$, $k = 1,...,N_s$

com N_s sendo o maior inteiro contido em MAX((M-1)/2, (N-1)/2).

 ${f NOTA~1}$: havendo um número ímpar de zeros reais, alguns dos coeficientes ${f b}_{2k}$ será nulo, da mesma forma que havendo um ímpar de polos reais, algum dos coeficientes a_{2k} será nulo

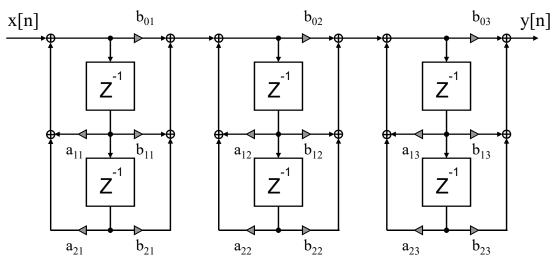
NOTA 2: as diferentes possibilidades de combinação de polos e zeros num subsistema de 2ª ordem, assim como as possíveis alternativas de sequenciação destes subsistemas, conduz a que haja um número elevado de diferentes realizações com a mesma função de transferência global (ver secção 6.3.2 do Oppenheim) 12



Estruturas de realização de sistemas discretos

 por sua vez, cada subsistema de 2ª ordem pode ser implementado com uma estrutura direta do tipo I ou II, sendo na prática normalmente preferida esta última por minimizar custos computacionais e de memória

EXEMPLO: ilustra-se a realização de um sistema IIR de 6ª ordem, estruturado numa cascata de subsistemas de 2ª ordem:



NOTA: esta estrutura em cascata pode "consumir" mais operações de multiplicação do que uma estrutura direta: de facto, admitindo N ímpar e N=M, no primeiro caso o número de multiplicações é proporcional a 5Ns=5(N-1)/2 e no segundo caso o número de multiplicações é proporcional a 2N-1. Para evitar esta desvantagem mas também para controlar a dinâmica do sinal na cascata (o que é desejável quando se usa aritmética de vírgula fixa), é comum reformular-se H(z) como sugerido no 'slide' anterior

- Estruturas em paralelo para a realização de sistemas IIR
 - em alternativa à factorização dos polinómios em numerador e denominador da função de transferência racional H(z), é possível também decompor H(z) em frações parciais:

$$H(z) = \frac{\sum_{\ell=0}^{M-1} b_{\ell} Z^{-\ell}}{1 - \sum_{k=1}^{N-1} a_{k} Z^{-k}} = \sum_{k=0}^{N_{p}} C_{k} Z^{-k} + \sum_{k=0}^{N_{1}-1} \frac{A_{k}}{1 - c_{k} Z^{-1}} + \sum_{k=0}^{N_{2}-1} \frac{B_{k} (1 - e_{k} Z^{-1})}{(1 - d_{k} Z^{-1})(1 - d_{k}^{*} Z^{-1})}$$

com $N=N_1+2(N_2-1)$ e $N_p=M-N$ no caso de $M\ge N$ (caso contrário o primeiro somatório não existe)

 esta decomposição exprime uma estrutura paralela de subsistemas de atraso e IIR de 1ª e 2ª ordem; no caso dos coeficientes b_ℓ e a_k serem reais, agrupando pares de polos, é possível escrever:

$$H(z) = \sum_{k=0}^{N_p} C_k Z^{-k} + \sum_{k=0}^{N_s-1} \frac{e_{0k} - e_{1k} Z^{-1}}{1 - a_{1k} Z^{-1} - a_{2k} Z^{-2}}$$

o que reduz a estrutura a um paralelo de subsistemas de atraso e IIR de 2ª ordem

FEUP-DEEC, October 24, 2022

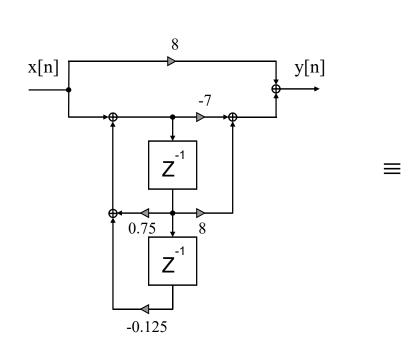
Estruturas de realização de sistemas discretos

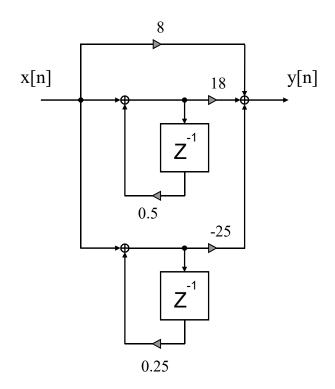
EXEMPLO: representar duas estruturas paralelas que realizem o $H(z) = \frac{1 + 2Z^{-1} + Z^{-2}}{1 - 0.75Z^{-1} + 0.125Z^{-2}}$ sistema causal:

R: a função de transferência deste sistema pode decompor-se em:

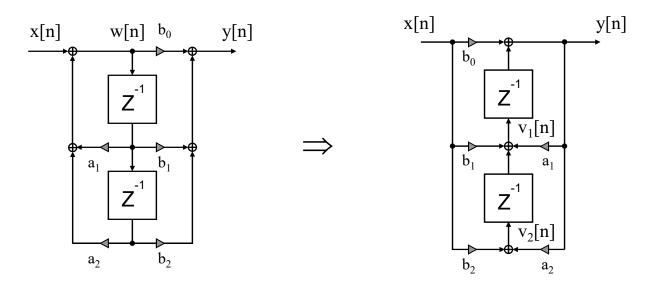
$$H(z) = 8 + \frac{-7 + 8Z^{-1}}{1 - 0.75Z^{-1} + 0.125Z^{-2}} = 8 + \frac{18}{1 - 0.5Z^{-1}} - \frac{25}{1 - 0.25Z^{-1}}$$

o que conduz às duas estruturas paralelas seguintes:





- Estruturas transpostas
 - sabe-se da teoria dos diagramas de fluxo que a transposição não altera a função de transferência de um sistema; a transposição é conseguida invertendo o fluxo de sinal em todos os ramos mas conservando os seus fatores de transmissão, convertendo os nós de derivação em nós de soma e *vice-versa*, e trocando a entrada com a saída
 - como exemplo, ilustra-se a estrutura transposta de uma estrutura direta do tipo II vista anteriormente:



 Questão: deduzir o sistema de equações às diferenças associado a cada uma das estruturas anteriores e indicar em que circunstâncias são equivalentes.

R: <u>para condições iniciais nulas</u>, os dois sistemas seguintes de equações às diferenças descrevem o mesmo sistema discreto:

$$w[n] = x[n] + a_1 w[n-1] + a_2 w[n-2]$$

$$y[n] = b_0 w[n] + b_1 w[n-1] + b_2 w[n-2]$$

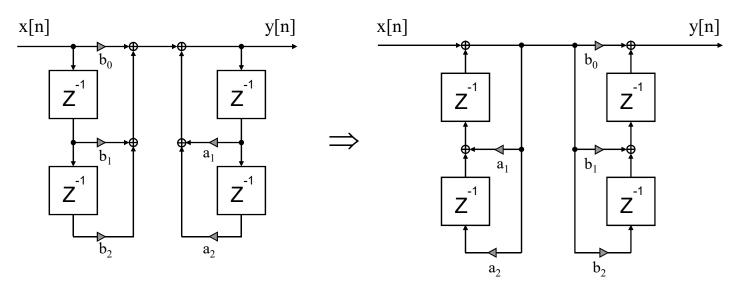
$$y[n] = b_0 x[n] + b_1 w[n-1] + b_2 w[n-2]$$

$$y[n] = b_0 x[n] + v_1 [n-1]$$

NOTA: enquanto que a estrutura direta do tipo II realiza em primeiro lugar os polos do sistema e de seguida os seus zeros, a estrutura transposta do tipo II realiza em primeiro lugar os zeros do sistema e de seguida os seus polos, o que se poderá tornar importante quando se utiliza aritmética de precisão finita (*i.e.* inteira).

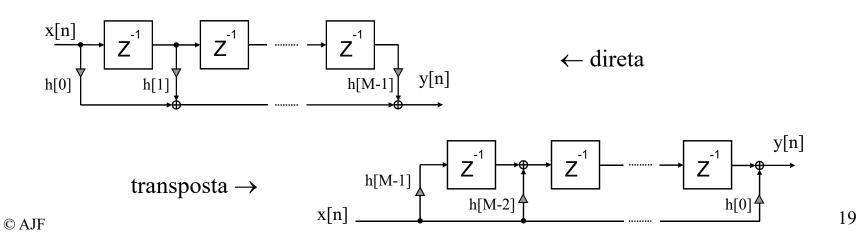
Estruturas de realização de sistemas discretos

 ilustra-se também a título de exemplo, a estrutura transposta de uma estrutura direta do tipo I vista anteriormente:



- em síntese:
 - o princípio da transposição é aplicável a qualquer uma das estruturas IIR anteriormente vistas: direta do tipo I, direta do tipo II, em cascata e em paralelo. Este facto enfatiza a ideia de que há uma enorme diversidade de estruturas que realizam o mesmo sistema discreto, algumas das quais poderão revelar-se mais interessantes do ponto de vista prático, sobretudo devido aos efeitos de propagação dos erros decorrentes da representação numérica finita.

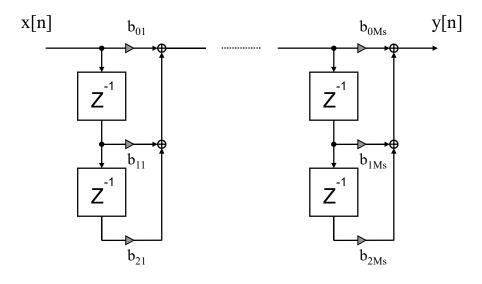
- Estruturas de realização de sistemas FIR
 - É claro que sendo os sistemas FIR uma particularização dos sistemas IIR (no sentido em que, para sistemas causais, só há polos em Z=0), a discussão anterior é assim genérica e portanto também aplicável a sistemas FIR. Contudo, há estruturas específicas para os diversos tipos de filtros FIR.
 - estrutura direta e transposta
 - a equação às diferenças para um sistema FIR causal é: $y[n] = \sum_{\ell=0}^{n} h[\ell]x[n-\ell]$ o que traduz a convolução linear discreta entre as sequências h[n] e x[n], a estrutura de realização direta é também conhecida por filtro transversal e representa-se a seguir, assim como a sua estrutura transposta:



- estrutura em cascata
 - a estrutura em cascata para a realização de sistemas FIR deriva-se da fatorização do polinómio H(z), que se supõe de coeficientes reais, em polinómios de 2ª ordem cujos coeficientes são também reais:

$$H(z) = \sum_{\ell=0}^{M-1} b_{\ell} Z^{-\ell} = \prod_{k=1}^{M_s} \left(b_{0k} + b_{1k} Z^{-1} + b_{2k} Z^{-2} \right)$$

e em que M_s é o maior inteiro contido em (M-1)/2.



NOTA 1: se o número de zeros reais for ímpar, um dos coeficientes b_{2k} será nulo NOTA 2: a transposição individual de cada polinómio de 2ª ordem, ou de todo o diagrama de blocos representado, constitui outras alternativas possíveis de realização do sistema FIR

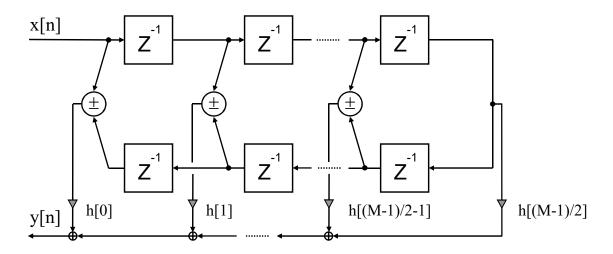
- Estruturas de realização de sistemas FIR de fase linear
 - Já foi visto em PDSI que há quatro tipos de sistemas FIR de fase linear consoante a ordem do sistema seja par ou ímpar e a resposta impulsional seja simétrica ou anti-simétrica.
 - O interesse de qualquer um dos dois tipos de simetria existente na resposta impulsional de um sistema FIR de fase linear reside na possibilidade de permitir reduzir, para cerca de metade, o número de multiplicações da estrutura de realização associada.
 - De facto, para um sistema FIR de fase linear do tipo 1 (sinal "+" na equação e diagrama seguintes) e do tipo 3 (sinal "-" na equação e diagrama seguintes), teremos:

$$y[n] = \sum_{\ell=0}^{M-1} h[\ell]x[n-\ell] = \sum_{\ell=0}^{(M-1)/2-1} h[\ell]x[n-\ell] + h\left[\frac{M-1}{2}\right]x\left[n - \frac{M-1}{2}\right] + \sum_{\ell=(M-1)/2+1}^{M-1} h[\ell]x[n-\ell] = \sum_{\ell=0}^{M-1} h[\ell]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] + \sum_{\ell=0}^{M-1} h[\ell]x[n-\ell] = \sum_{\ell=0}^{M-1} h[\ell]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] = \sum_{\ell=0}^{M-1} h[\ell]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] = \sum_{\ell=0}^{M-1} h[\ell]x[n-\ell] + h\left[\frac{M-1}{2}\right]x[n-\ell] + h$$

$$= \sum_{\ell=0}^{(M-1)/2-1} h[\ell](x[n-\ell] \pm x[n+\ell-M+1]) + h\left[\frac{M-1}{2}\right] x\left[n-\frac{M-1}{2}\right]$$

Estruturas de realização de sistemas discretos

a que corresponde a seguinte estrutura "eficiente" de cálculo:

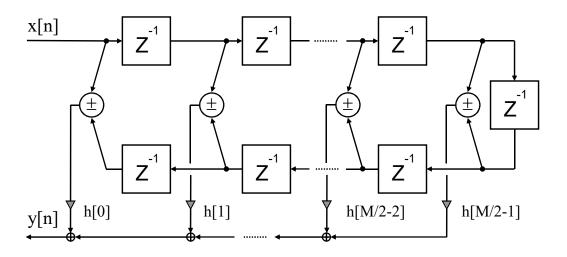


 por uma análise idêntica, conclui-se que para um sistema FIR de fase linear do tipo 2 (sinal "+" na equação e diagrama seguintes) e do tipo 4 (sinal "-" na equação e diagrama seguintes), teremos:

$$y[n] = \sum_{\ell=0}^{M/2-1} h[\ell] (x[n-\ell] \pm x[n+\ell-M+1])$$

Estruturas de realização de sistemas discretos

a que corresponde a seguinte estrutura "eficiente" de cálculo:



NOTA: dada a relação recíproca-conjugada entre os vários zeros de um sistema FIR de fase linear, é possível realizar estes sistemas como uma cascata de subsistema de 1ª, 2ª e 4ª ordem, cada um deles de fase também linear.