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Overview
• The computation of the Discrete Fourier Transform

– motivation

– the direct computation of the DFT

– the efficient computation of the DFT (FFT)

– the decimation-in-time FFT algorithm (DIT)

• structure

• conclusions relative to the FFT-DIT algorithm

• programming of the DIT algorithm

– the decimation-in-frequency FFT algorithm (DIF)

• structure

• conclusions relative to the FFT-DIF algorithm

– important realization aspects

• the necessity of “bit reversal”

• the efficient computation of the WN
r coefficients

• case where N is not a power of two

• the computation of the IDFT using the DFT

• the DFT of real signals
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• Motivation

– the properties of the DFT make it particularly suitable to analyze and 
design systems in the Fourier domain,

– since techniques generally known as Fast Fourier Transform (FFT) 
exist to realize a fast and efficient computation of the DFT, the DFT 
represents in practice a common and very important tool in many digital 
signal processing applications,

• NOTE 1: the maximum efficiency in the fast computation of the DFT is 
achieved when all N samples uniformly distributed on the unit circumference 
of the Z plane are computed,

• NOTE 2: when samples of the Fourier transform need to be computed on a 
fraction only of the unit circumference (i.e., less than 2), other flexible 
computation techniques exist (although less efficient than the FFT) such as the 
Goertzel algorithm or the “chirp” Z transform algorithm,

• NOTE 3: the computational efficiency of the FFT is so considerable that 
frequently it is preferable to replace the conventional computation of the 
linear convolution between two discrete sequences, by the DFTs of both 
sequences, their multiplication in the discrete-frequency domain and the 
inverse DFT of the resulting product sequence,

• NOTE 4: a common way to evaluate the complexity of a fast DFT 
computation algorithm involves analyzing the total number of addition and 
multiplication operations involved.

The computation of the Discrete Fourier Transform
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• direct computation of the DFT

equation for the direct DFT (analysis):

equation for the inverse DFT (synthesis):

where WN=e-j2/N and x[n] and X[k] are, in general, complex-valued.

• NOTE: since the analysis and synthesis DFT equations are quite similar, it 
can be anticipated that except for small adaptations, it is possible to 
compute the inverse DFT using an algorithm implementing the direct DFT 
and vice-versa.

Admitting that both x[n] and X[k] are complex-valued, it can be easily 
concluded that the total number of arithmetic operations involved in the 
computation of the direct DFT (recalling that all N values of X[k] need to be 
computed and recalling the real operations involved in the product of two 

complex numbers: (a+jb)(c+jd)=(ac-bd)+j(bc+ad) ) is given by:

 complex multiplications:  N2  4N2 real multiplications + 2N2 real additions

 complex additions: N(N-1)  2N(N-1) real additions

The computation of the Discrete Fourier Transform
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hence, in total we have:

 real multiplications:  4N2  real additions:  N(4N-2)

These results reveal that the computational cost involved in the direct computation 
of the DFT is proportional to N2, which in practical terms may become prohibitive 
if N is “large”:

On the other hand, it is also required that in the realization of the DFT, besides the 
input x[n], all coefficients WN

kn are stored and are accessible.
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• The efficient computation of the DFT

– the techniques of efficient computation of the DFT not only reduce the 
computational cost of the direct DFT computation but also make it 
proportional to N at a smaller rate than that of the direct computation 
(N2),

– most DFT computation techniques take advantage of the properties of 
symmetry and periodicity of the WN

kn coefficients:

• WN
-kn = WN

k(N-n) = (WN
kn)* (complex conjugate symmetry)

• WN
kn = WN

k(N+n) = WN
(N+k)n (periodicity in n and k)

– the most relevant techniques for the efficient computation of the DFT 
are generally know as Fast Fourier Transform (FFT) and, despite the 
fact that their origins date back to 1805 with works of Gauss, it was only 
after 1965, with the publication of an algorithm by Cooley and Tukey for 
the computation of the DFT, that those techniques had a clear 
development and practical impact.

The computation of the Discrete Fourier Transform
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– the basic principle of the FFT is the computation of a DFT of a given 
length using shorter DFTs, this is achieved by means of a 
decomposition of the input sequence, or of the output sequence, of the 
DFT, in successively smaller sequences by taking advantage of the 
properties of symmetry and periodicity of the WN

kn coefficients

– if the decomposition is relative to the input sequence, the 
corresponding FFT algorithm is called decimation in time (DIT), if the 
decomposition is relative to the output sequence, the corresponding 
algorithm is called decimation in frequency (DIF),

– as we shall see, in case N is a power of two number, the computational 
cost of the DIT or DIF algorithm is proportional to Nlog2N which, when 
compared to the direct computation ( N2), represents a computational 
gain of N / log2N, as illustrated in the following figure:

The computation of the Discrete Fourier Transform
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– in the literature [e.g., Oppenheim, section 9.2], it is usual to describe a 
recursive DFT computation technique known as the Goertzel algorithm; 
despite the fact that we don’t review it here, we highlight some of its 
characteristics that are thoroughly described in standard textbooks 
[Oppenheim, Mitra]:

• the Goertzel algorithm is a recursive algorithm that (contrarily to the FFT) 
avoids the need to store the WN

kn coefficients,

• the computational cost of the Goertzel algorithm is less than that of the direct 
computation but is still proportional to N2,

• while the FFT algorithms are particularly suitable when all N DFT coefficients X[k] are 
needed, the Goertzel algorithm is suitable when a number M of DFT coefficients need to 
be computed for any MN; in fact, the Goertzel algorithm or even the direct DFT 
computation may be preferable from the point of view of the computational load when M 
< log2N.
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• The decimation-in-time FFT algorithm (DIT)

– structure

• admitting to simplify that N is a power of two number (i.e., N=2v, with v integer) 
this algorithm splits the computation of the N-length DFT in shorter DFTs, by 
successively dividing the input sequence in two sub-sequences with half the 
length, one of them regarding the samples having even index, and the other 
regarding the samples having odd index;  thus, for the first stage of 
decomposition we have:

by noting, however, that  WN
2=e-j2/(N/2) =WN/2, we have:

where G[k] and H[k] are two N/2-length DFTs, the former involves the even-
indexed input samples, and the latter involves the odd-indexed input 
samples.

The computation of the Discrete Fourier Transform
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Considering N=8, and recalling that G[k] and H[k] are periodic with period N/2 
(which for N=8 leads to H[4]=H[0] and G[4]=G[0] ), the previous decomposition 
may be illustrated as follows:

 From a computational point of view, this decomposition represents already a 
significant gain since it replaces a structure whose computational cost is 
proportional to N2 (in terms of multiplications or additions), by another one whose 
computational cost is proportional to 2(N/2)2+N = N2/2+N, which is less 
than N2.

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

DFT
(N/2)

DFT
(N/2)

G[0]

G[1]

G[2]

G[3]

H[0]

H[1]

H[2]

H[3]

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

The computation of the Discrete Fourier Transform
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 the computation of each coefficient X[k], when combining G[k] and H[k], 
requires a complex multiplication using WN

k, where 0kN-1. Taking 
advantage of the symmetry of these coefficients, which is clear from:

the number of multiplications by WN
k may be reduced by 50% by reutilizing in 

the second half of the computation of X[k], the multiplications involving the 
coefficients WN

k and already performed when computing the first half of X[k]. 
For example, for N=8, in particular we have X[3]=G[3]+ W8

3H[3] and also 
X[7]=G[3]+ W8

7H[3]=G[3]- W8
3H[3], which allows to redesign the previous 

structure to a simplified form:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]
WN

3

WN
2

WN
1

WN
0

-1

-1

-1

-1

DFT
(N/2)

DFT
(N/2)

G[0]

G[1]

G[2]

G[3]

H[0]

H[1]

H[2]

H[3]

The computation of the Discrete Fourier Transform
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The computational cost of this structure (in terms of number of multiplications) is 
thus proportional to N2/2+N/2, and the number of additions (a subtraction is 

equivalent to an addition) is proportional to N2/2+N.

• The previous procedure may again be repeated regarding each DFT of 
length N/2. For example, the N/2-length DFT G[k] (N/2=4 in our example) may 
be replaced by the following sub-structure:

 its computational cost (multiplications) is proportional to 2(N/4)2+N/4 = 
N2/8+N/4, making that if this structure is used in the computation of G[k] and 
H[k], the total computational cost (multiplications) involved in the computation 
of X[k] is proportional to 2N2/8+2N/4+N/2 = N2/4+N.

x[0]

x[2]

x[4]

x[6]

DFT
(N/2)

G[0]

G[1]

G[2]

G[3]

g[0]=x[0]

g[2]=x[4]

G[0]

G[1]

WN/2
0

g[1]=x[2]

g[3]=x[6]

G[2]

G[3]
WN/2

1

-1

-1

DFT
(N/4)

DFT
(N/4)

The computation of the Discrete Fourier Transform
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In our example, where N=8, one more optimization possibility exists that 
concerns the computation of the DFTs whose length is N/4=2. It may be 
simplified as illustrated for the first DFT of the previous structure:

This basic computational structure is known in the literature as butterfly due to 
its shape, and has a computational cost corresponding to a single complex 
multiplication and two complex additions.

If this structure is replaced in that of the previous slide and the result is 
replaced in the initial structure, we obtain the complete structure represented 
in the next slide (N=8).

g[0]=x[0]

g[2]=x[4]

DFT
(N/4)

g[0]

g[2]
WN/4

0

-1

The computation of the Discrete Fourier Transform
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• Structure of the FFT-DIT algorithm for N=8:

 The total computational cost of this structure and concerning multiplications, 

is thus equal to 1N/2+N/4+N/4+N/2 = #stages  N/2 = N/2  log2N. 

 as it is easily recognized from the illustration, the total computational cost of 

this structure and concerning additions is N  log2N.

WN/4
0

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN/4
0

WN/4
0

WN/4
0 WN/2

1

WN/2
0

WN/2
1

WN/2
0

WN
3

WN
2

WN
1

WN
0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

The computation of the Discrete Fourier Transform
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– Conclusions regarding the FFT-DIT algorithm

 The computational structure of the DIT algorithm, when N is a power of two, 

is based on an organization in log2N stages of several groups of butterflies.

 If the number of inputs or outputs of each butterfly is two (as we have 

considered so far, although there are other possibilities, for example four) then the 

algorithm is said to be radix-2, under this assumption:

– the number of butterflies per stage is constant and equal to N/2,

– from stage to stage, the number of groups varies by a factor of two, and the number 
of butterflies in each stage varies inversely by the same factor.

 The basic computational structure which is the butterfly, generates outputs 
which replace the input values without affecting other data positions in the 
same stage of the structure, which not only facilitates the parallel processing

but also allows the in-place processing; that is, from stage to stage, the 
input data are replaced by the output data, which avoids the need for 
additional memory.

xm-1[p]

xm-1[q]
WN

r

-1

Xm[p]

Xm[q]

stage m-1 stage m

position p

position q

The computation of the Discrete Fourier Transform
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 Since the DIT results from the successive decomposition (from the N-length 

DFT, till the smallest DFT of length two) of the input data sequence of the DFT 
into two sub-sequences, one corresponding to the even-indexed samples 
and the other corresponding to the odd-indexed samples, the order of the 
data at the input of the DIT algorithm must reflect the order resulting from the 
successive decomposition; this order has the interesting property that it may 
be expressed by the reversing the bits of the binary number representing the 
natural order of the input (“bit-reversal”).

• Example for N=8:

0  000

1  001

2  010

3  011

4  100

5  101

6  110

7  111

000  0

100  4

010  2

110  6

001  1

101  5

011  3

111  7

decimal | binary

bit

reversed

binary | decimal

The computation of the Discrete Fourier Transform
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• NOTE 1: several Digital Signal Processors have a special addressing mode 
that is suited to realize “bit-reversed” addressing,

‒ Note: Matlab offers two specialized functions: bitrevorder(.) and 
digitrevorder(.)

• NOTE 2: some of the indexes are equal to their own “bit-reversed” version,

• NOTE 3: given the nature of the DIT algorithm, a correction of the order of 
the input data to its “bit-reversed” order is necessary so that the output data 
is organized according to its natural sequential order.

The computation of the Discrete Fourier Transform
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– Programming of the FFT-DIT algorithm

 The programming of a computational procedure concerning the FFT-DIT 
results from the analysis of its butterfly structure, as repeated below for N=8, 
taking that of slide 13 and including a slight modification of the WN/b

a

complex coefficients that are now expressed as WN
ab, which facilitates the 

programming since the butterfly is a basic computational structure that is 
iteratively computed.

WN
0

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
0

WN
0 WN

2

WN
0

WN
2

WN
0

WN
3

WN
2

WN
1

WN
0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

The computation of the Discrete Fourier Transform
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 The computational procedure includes two phases:

1- first, implement the bit-reversal of the input data,

2- then the computation is iterated for all N/2  log2N butterflies (N/2 butterflies 

per stage  log2N stages), insuring that for each butterfly, addresses are 
correctly generated that index:

a) the input/output data,

b) the WN
r complex coefficient

 Using a “pseudo-C” programming language, the sketch of a possible 
code implementing the FFT-DIT is presented in the next slide.

The computation of the Discrete Fourier Transform
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/* inicialization */

estg=‘number of stages’; N=2^estg; grup=N; butf=1;

/* bit reversal */

bitreversal(x, N);

/*

* iterates over all butterflies using

* a stage, group and butterfly counter

*/

for (i=0; i<estg; i++)

{

grup=grup/2;

for (j=0; j<grup; j++)

{

for (k=0; k<butf; k++)

{

ind1=j*2*butf+k;

ind2=ind1+butf;

arg=grup*k;

temp=x[ind2]*WN
arg;

x[ind2]=x[ind1]-temp;

x[ind1]=x[ind1]+temp;

}

}

butf=butf*2;

}

• FFT-DIT

The computation of the Discrete Fourier Transform
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• The decimation in frequency FFT algorithm (DIF)

– structure

• Instead of structuring the DFT computation on the basis of a successive 
decomposition of the x[n] input sequence into shorter sequences, the FFT-
DIF algorithm implements a successive decomposition of the output X[k] 
sequence into shorter sequences, such that these are computed using 
shorter DFTs. Admitting to simplify that N is a power of two number, we have 
for the first level of decomposition and considering even-indexed ouputs:

and, also, for the odd-indexed outputs:

The computation of the Discrete Fourier Transform
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x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

DFT
(N/2)

DFT
(N/2)

X[0]

X[2]

X[4]

X[6]

X[1]

X[3]

X[5]

X[7]
WN

3

WN
2

WN
1

WN
0

-1

-1

-1

-1

Considering N=8, the previous equations give rise to the following structure:

The computation of the Discrete Fourier Transform
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By iterating this procedure of splitting the DFT computation into shorter DFTs, 
we get to the following structure, considering N=8 (where the WN/b

a coefficients 

have already been replaced by WN
ab):

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]
WN

3

WN
2

WN
1

WN
0

-1

-1

-1

-1

WN
2

WN
0

-1

-1

WN
2

WN
0

-1

-1

WN
0

-1

WN
0

-1

WN
0

-1

WN
0

-1
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– Conclusions relative to the FFT-DIF algorithm

 by comparing the structure of the previous slide with that of slide 17 that is 
relative to the FFT-DIT, it can be concluded that the structure of the FFT-DIF 
algorithm results from a transposition of that of the FFT-DIT algorithm, 
consisting of a reversal of the signal flow in all branches, an exchange 
between derivation nodes and summation nodes, and an exchange between 
inputs and outputs. In particular, the DIF butterfly results from the 
transposition of that of the DIT butterfly:

 It results from the previous that:

– as it happens with the DIT algorithm, it is also true with the DIF algorithm that the 
number of butterflies per stage is N/2 and that the total number of arithmetic 
operations is N/2log2N multiplications and Nlog2N complex additions,

– being a transposition of the DIF algorithm, the DIF algorithm also allows the “in-
place” computation,

– contrarily to the DIT algorithm, the inputs of the DIF algorithm are sequentially 
ordered while the outputs are “bit-reversed” ordered which requires a reordering to 
the natural sequential order that can be done using the same “bit-reversal” 
algorithm already seen for the FFT-DIT.

xm-1[p]

xm-1[q]

Xm[p]

Xm[q]

stage m-1 stage m

position p

position q
WN

r

-1
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• Implementation particularities

– on the necessity of “bit-reversal”

• in addition to the implementation structures discussed in the previous slides, 
other alternatives exist [see Oppenheim, sections 9.3 and 9.4] including a 
modified FFT-DIT algorithm that considers sequentially ordered inputs and 
“bit-reversed” ordered outputs, or a modified FFT-DIF algorithm that 
considers “bit-reversed” ordered inputs and sequentially ordered outputs. 
These alternatives may be combined in such a way that there is no need for 
any bit-reversal reordering in a system including signal analysis and 
synthesis. For example, in the implementation of the circular convolution, the 
direct DFTs of the two inputs may be realized using the FFT-DIF algorithm 
(the corresponding outputs will be bit-reversed ordered) and may be subsequently 
multiplied. The result keeps the bit-reversed order and may be presented at 
the input of an inverse DFT that is implemented using an FFT-DIT algorithm. 
The end result will then be sequentially ordered, as desired.

The computation of the Discrete Fourier Transform
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– Computation of the WN
r coefficients

• According to the assessment of the most critical issues in each application in 
terms of processing power or memory, we may prefer to store all necessary 
WN

r coefficients, or to compute them “on-the-fly” when they are needed. In 
the first case tables of the values of cos() e sin() functions are needed 

that may, however, be optimized to avoid redundancies. In the second case, 
it is possible to compute the coefficients recursively: WN

r = WN
r-1 WN but care 

must be taken in order to avoid the propagation of representation or 
rounding errors (i.e., due to the finite resolution) that are particularly critical in the 
case of fixed-point processing.

– Case when N is not a power-of-two number

• We have described the radix-2 decomposition but other possibilities exist 
such as radix-4 or a combination of radix-2 and radix-4, that is, mixed radix, 
that offer other computational advantages when N is a power of 4 or a 
combined power of 2 or 4. Computational gains are also possible when N is 
a composite integer number, i.e., it can be expressed as a product of two 
integer numbers. In these cases it is also possible to develop fast 
computational algorithms although their structure and indexing scheme are 
more complicated than those described here.

The computation of the Discrete Fourier Transform
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– the IDFT computation using the DFT

• the development of the DIT and DIF algorithms has been illustrated using 
the particular case of the DFT implementation. Although it is easy to adapt 
the previous discussion to the case of the IDFT implementation, there is a 
practical interest understanding how the utilization of an FFT algorithm 
implementing the direct DFT transform may be used to compute the inverse 
DFT. With this purpose in mind, and because the substantive differences 
between the DFT and IDFT are the sign of the complex exponential and the 
multiplicative 1/N factor, we describe three alternatives:

1- as                                           we have the following possible approach:

DFT
m{X[]}

e{X[]} 





 m{x[n]}

e{x[n]}

-1

1/N

-1/N

The computation of the Discrete Fourier Transform
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2- as                                               we have the following possible approach:

3- as                                                        we have the following possible approach:

DFT
m{X[]}

e{X[]} 





 m{x[n]}

e{x[n]}
1/N

1/N

DFT
X[] x[n]

1/N
[()N]  [(-)N]

X[(-)N]

(circular inversion)


X[] X[N-], =0,1, … , N/2-1

NOTE: naturally, one may also write:

The computation of the Discrete Fourier Transform
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– the DFT of real signals

• In general, the DFT and IDFT equations presume complex inputs and 
outputs. However, it occurs frequently that the data at the input of a DFT is 
real, or that the data at the output of an IDFT is real, despite the fact that 
signals are processed in the complex frequency domain for example. In 
these cases, the utilization of a complex DFT or IDFT represents a 
computational inefficiency since the imaginary part of the data vector is zero. 
Two particularly interesting cases that occur frequently in practice are 
addressed that eliminate that inefficiency:

1- the computation of the DFTs of two real signals, whose length is N, using a 
single complex DFT of length N, and

2- the computation of the DFT of a real signal whose length is N using a single 
complex DFT of length N/2.

The computation of the Discrete Fourier Transform
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1- DFTs of two real-valued signals of length N

 If x1[n] and x2[n] are two real-valued signals of length N, their DFTs comply with the 
following symmetry:

by constructing the signal y[n]=  x1[n] + j x2[n], we have:

and also:

and conjugating both sides of this equation, leads to:

which, when combined with the first equation, allows to recover X1[k] and X2[k] :

F

even part of the real 
component of Y[k]

even part of the imaginary 
component of Y[k]

odd part of the imaginary 
component of Y[k]

odd part of the real 
component of Y[k]

The computation of the Discrete Fourier Transform
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2- DFT of a real-valued signal whose length is N

 is x[n] is a real-vaçued signal whose length is N, and as discussed in the 
presentation of the “decimation-in-time” algorithm, it is possible to compute its DFT 
using two DFTs of length N/2:

This way, it is sufficient to compute the DFTS G[k] and H[k] , whose length (i.e., 

periodicity) is N/2, and then combine them as performed for the last stage of an FFT-
DIT algorithm. As G[k] and H[k] are the Fourier transforms of two real-valued 
sequences of length N/2, it is possible, as seen in the previous slide, to compute 
them using a single complex FFT of length N/2 and whose input is:

y[n]=g[n]+jh[n]=x[2n]+jx[2n+1] ,   0nN/2-1.

The computation of the Discrete Fourier Transform


