
1F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

Overview
• The computation of the Discrete Fourier Transform

– motivation

– the direct computation of the DFT

– the efficient computation of the DFT (FFT)

– the decimation-in-time FFT algorithm (DIT)

• structure

• conclusions relative to the FFT-DIT algorithm

• programming of the DIT algorithm

– the decimation-in-frequency FFT algorithm (DIF)

• structure

• conclusions relative to the FFT-DIF algorithm

– important realization aspects

• the necessity of “bit reversal”

• the efficient computation of the WN
r coefficients

• case where N is not a power of two

• the computation of the IDFT using the DFT

• the DFT of real signals

2F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• Motivation

– the properties of the DFT make it particularly suitable to analyze and
design systems in the Fourier domain,

– since techniques generally known as Fast Fourier Transform (FFT)
exist to realize a fast and efficient computation of the DFT, the DFT
represents in practice a common and very important tool in many digital
signal processing applications,

• NOTE 1: the maximum efficiency in the fast computation of the DFT is
achieved when all N samples uniformly distributed on the unit circumference
of the Z plane are computed,

• NOTE 2: when samples of the Fourier transform need to be computed on a
fraction only of the unit circumference (i.e., less than 2), other flexible
computation techniques exist (although less efficient than the FFT) such as the
Goertzel algorithm or the “chirp” Z transform algorithm,

• NOTE 3: the computational efficiency of the FFT is so considerable that
frequently it is preferable to replace the conventional computation of the
linear convolution between two discrete sequences, by the DFTs of both
sequences, their multiplication in the discrete-frequency domain and the
inverse DFT of the resulting product sequence,

• NOTE 4: a common way to evaluate the complexity of a fast DFT
computation algorithm involves analyzing the total number of addition and
multiplication operations involved.

The computation of the Discrete Fourier Transform

3F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• direct computation of the DFT

equation for the direct DFT (analysis):

equation for the inverse DFT (synthesis):

where WN=e-j2/N and x[n] and X[k] are, in general, complex-valued.

• NOTE: since the analysis and synthesis DFT equations are quite similar, it
can be anticipated that except for small adaptations, it is possible to
compute the inverse DFT using an algorithm implementing the direct DFT
and vice-versa.

Admitting that both x[n] and X[k] are complex-valued, it can be easily
concluded that the total number of arithmetic operations involved in the
computation of the direct DFT (recalling that all N values of X[k] need to be
computed and recalling the real operations involved in the product of two

complex numbers: (a+jb)(c+jd)=(ac-bd)+j(bc+ad)) is given by:

 complex multiplications: N2 4N2 real multiplications + 2N2 real additions

 complex additions: N(N-1) 2N(N-1) real additions

The computation of the Discrete Fourier Transform

4F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

hence, in total we have:

 real multiplications: 4N2 real additions: N(4N-2)

These results reveal that the computational cost involved in the direct computation
of the DFT is proportional to N2, which in practical terms may become prohibitive
if N is “large”:

On the other hand, it is also required that in the realization of the DFT, besides the
input x[n], all coefficients WN

kn are stored and are accessible.

50 100 150 200
0

2

4

6

8

10

12

14

16
x 10

4

N

A
ri
th

m
e
tic

 o
p
e
ra

tio
n
s

The computation of the Discrete Fourier Transform

5F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• The efficient computation of the DFT

– the techniques of efficient computation of the DFT not only reduce the
computational cost of the direct DFT computation but also make it
proportional to N at a smaller rate than that of the direct computation
(N2),

– most DFT computation techniques take advantage of the properties of
symmetry and periodicity of the WN

kn coefficients:

• WN
-kn = WN

k(N-n) = (WN
kn)* (complex conjugate symmetry)

• WN
kn = WN

k(N+n) = WN
(N+k)n (periodicity in n and k)

– the most relevant techniques for the efficient computation of the DFT
are generally know as Fast Fourier Transform (FFT) and, despite the
fact that their origins date back to 1805 with works of Gauss, it was only
after 1965, with the publication of an algorithm by Cooley and Tukey for
the computation of the DFT, that those techniques had a clear
development and practical impact.

The computation of the Discrete Fourier Transform

6F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– the basic principle of the FFT is the computation of a DFT of a given
length using shorter DFTs, this is achieved by means of a
decomposition of the input sequence, or of the output sequence, of the
DFT, in successively smaller sequences by taking advantage of the
properties of symmetry and periodicity of the WN

kn coefficients

– if the decomposition is relative to the input sequence, the
corresponding FFT algorithm is called decimation in time (DIT), if the
decomposition is relative to the output sequence, the corresponding
algorithm is called decimation in frequency (DIF),

– as we shall see, in case N is a power of two number, the computational
cost of the DIT or DIF algorithm is proportional to Nlog2N which, when
compared to the direct computation (N2), represents a computational
gain of N / log2N, as illustrated in the following figure:

The computation of the Discrete Fourier Transform

7F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– in the literature [e.g., Oppenheim, section 9.2], it is usual to describe a
recursive DFT computation technique known as the Goertzel algorithm;
despite the fact that we don’t review it here, we highlight some of its
characteristics that are thoroughly described in standard textbooks
[Oppenheim, Mitra]:

• the Goertzel algorithm is a recursive algorithm that (contrarily to the FFT)
avoids the need to store the WN

kn coefficients,

• the computational cost of the Goertzel algorithm is less than that of the direct
computation but is still proportional to N2,

• while the FFT algorithms are particularly suitable when all N DFT coefficients X[k] are
needed, the Goertzel algorithm is suitable when a number M of DFT coefficients need to
be computed for any MN; in fact, the Goertzel algorithm or even the direct DFT
computation may be preferable from the point of view of the computational load when M
< log2N.

50 100 150 200 250

0

1

2

3

4

5

6

7
x 10

4

N

A
ri
th

m
é
tic

 O
p
e
ra

ti
o
n
s

N2

Nlog2N

8F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• The decimation-in-time FFT algorithm (DIT)

– structure

• admitting to simplify that N is a power of two number (i.e., N=2v, with v integer)
this algorithm splits the computation of the N-length DFT in shorter DFTs, by
successively dividing the input sequence in two sub-sequences with half the
length, one of them regarding the samples having even index, and the other
regarding the samples having odd index; thus, for the first stage of
decomposition we have:

by noting, however, that WN
2=e-j2/(N/2) =WN/2, we have:

where G[k] and H[k] are two N/2-length DFTs, the former involves the even-
indexed input samples, and the latter involves the odd-indexed input
samples.

The computation of the Discrete Fourier Transform

9F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

Considering N=8, and recalling that G[k] and H[k] are periodic with period N/2
(which for N=8 leads to H[4]=H[0] and G[4]=G[0]), the previous decomposition
may be illustrated as follows:

 From a computational point of view, this decomposition represents already a
significant gain since it replaces a structure whose computational cost is
proportional to N2 (in terms of multiplications or additions), by another one whose
computational cost is proportional to 2(N/2)2+N = N2/2+N, which is less
than N2.

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

DFT
(N/2)

DFT
(N/2)

G[0]

G[1]

G[2]

G[3]

H[0]

H[1]

H[2]

H[3]

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

The computation of the Discrete Fourier Transform

10F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

 the computation of each coefficient X[k], when combining G[k] and H[k],
requires a complex multiplication using WN

k, where 0kN-1. Taking
advantage of the symmetry of these coefficients, which is clear from:

the number of multiplications by WN
k may be reduced by 50% by reutilizing in

the second half of the computation of X[k], the multiplications involving the
coefficients WN

k and already performed when computing the first half of X[k].
For example, for N=8, in particular we have X[3]=G[3]+ W8

3H[3] and also
X[7]=G[3]+ W8

7H[3]=G[3]- W8
3H[3], which allows to redesign the previous

structure to a simplified form:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]
WN

3

WN
2

WN
1

WN
0

-1

-1

-1

-1

DFT
(N/2)

DFT
(N/2)

G[0]

G[1]

G[2]

G[3]

H[0]

H[1]

H[2]

H[3]

The computation of the Discrete Fourier Transform

11F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

The computational cost of this structure (in terms of number of multiplications) is
thus proportional to N2/2+N/2, and the number of additions (a subtraction is

equivalent to an addition) is proportional to N2/2+N.

• The previous procedure may again be repeated regarding each DFT of
length N/2. For example, the N/2-length DFT G[k] (N/2=4 in our example) may
be replaced by the following sub-structure:

 its computational cost (multiplications) is proportional to 2(N/4)2+N/4 =
N2/8+N/4, making that if this structure is used in the computation of G[k] and
H[k], the total computational cost (multiplications) involved in the computation
of X[k] is proportional to 2N2/8+2N/4+N/2 = N2/4+N.

x[0]

x[2]

x[4]

x[6]

DFT
(N/2)

G[0]

G[1]

G[2]

G[3]

g[0]=x[0]

g[2]=x[4]

G[0]

G[1]

WN/2
0

g[1]=x[2]

g[3]=x[6]

G[2]

G[3]
WN/2

1

-1

-1

DFT
(N/4)

DFT
(N/4)

The computation of the Discrete Fourier Transform

12F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

In our example, where N=8, one more optimization possibility exists that
concerns the computation of the DFTs whose length is N/4=2. It may be
simplified as illustrated for the first DFT of the previous structure:

This basic computational structure is known in the literature as butterfly due to
its shape, and has a computational cost corresponding to a single complex
multiplication and two complex additions.

If this structure is replaced in that of the previous slide and the result is
replaced in the initial structure, we obtain the complete structure represented
in the next slide (N=8).

g[0]=x[0]

g[2]=x[4]

DFT
(N/4)

g[0]

g[2]
WN/4

0

-1

The computation of the Discrete Fourier Transform

13F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• Structure of the FFT-DIT algorithm for N=8:

 The total computational cost of this structure and concerning multiplications,

is thus equal to 1N/2+N/4+N/4+N/2 = #stages N/2 = N/2 log2N.

 as it is easily recognized from the illustration, the total computational cost of

this structure and concerning additions is N log2N.

WN/4
0

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN/4
0

WN/4
0

WN/4
0 WN/2

1

WN/2
0

WN/2
1

WN/2
0

WN
3

WN
2

WN
1

WN
0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

The computation of the Discrete Fourier Transform

14F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– Conclusions regarding the FFT-DIT algorithm

 The computational structure of the DIT algorithm, when N is a power of two,

is based on an organization in log2N stages of several groups of butterflies.

 If the number of inputs or outputs of each butterfly is two (as we have

considered so far, although there are other possibilities, for example four) then the

algorithm is said to be radix-2, under this assumption:

– the number of butterflies per stage is constant and equal to N/2,

– from stage to stage, the number of groups varies by a factor of two, and the number
of butterflies in each stage varies inversely by the same factor.

 The basic computational structure which is the butterfly, generates outputs
which replace the input values without affecting other data positions in the
same stage of the structure, which not only facilitates the parallel processing

but also allows the in-place processing; that is, from stage to stage, the
input data are replaced by the output data, which avoids the need for
additional memory.

xm-1[p]

xm-1[q]
WN

r

-1

Xm[p]

Xm[q]

stage m-1 stage m

position p

position q

The computation of the Discrete Fourier Transform

15F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

 Since the DIT results from the successive decomposition (from the N-length

DFT, till the smallest DFT of length two) of the input data sequence of the DFT
into two sub-sequences, one corresponding to the even-indexed samples
and the other corresponding to the odd-indexed samples, the order of the
data at the input of the DIT algorithm must reflect the order resulting from the
successive decomposition; this order has the interesting property that it may
be expressed by the reversing the bits of the binary number representing the
natural order of the input (“bit-reversal”).

• Example for N=8:

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

000 0

100 4

010 2

110 6

001 1

101 5

011 3

111 7

decimal | binary

bit

reversed

binary | decimal

The computation of the Discrete Fourier Transform

16F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• NOTE 1: several Digital Signal Processors have a special addressing mode
that is suited to realize “bit-reversed” addressing,

‒ Note: Matlab offers two specialized functions: bitrevorder(.) and
digitrevorder(.)

• NOTE 2: some of the indexes are equal to their own “bit-reversed” version,

• NOTE 3: given the nature of the DIT algorithm, a correction of the order of
the input data to its “bit-reversed” order is necessary so that the output data
is organized according to its natural sequential order.

The computation of the Discrete Fourier Transform

17F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– Programming of the FFT-DIT algorithm

 The programming of a computational procedure concerning the FFT-DIT
results from the analysis of its butterfly structure, as repeated below for N=8,
taking that of slide 13 and including a slight modification of the WN/b

a

complex coefficients that are now expressed as WN
ab, which facilitates the

programming since the butterfly is a basic computational structure that is
iteratively computed.

WN
0

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
0

WN
0 WN

2

WN
0

WN
2

WN
0

WN
3

WN
2

WN
1

WN
0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

The computation of the Discrete Fourier Transform

18F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

 The computational procedure includes two phases:

1- first, implement the bit-reversal of the input data,

2- then the computation is iterated for all N/2 log2N butterflies (N/2 butterflies

per stage log2N stages), insuring that for each butterfly, addresses are
correctly generated that index:

a) the input/output data,

b) the WN
r complex coefficient

 Using a “pseudo-C” programming language, the sketch of a possible
code implementing the FFT-DIT is presented in the next slide.

The computation of the Discrete Fourier Transform

19F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

/* inicialization */

estg=‘number of stages’; N=2^estg; grup=N; butf=1;

/* bit reversal */

bitreversal(x, N);

/*

* iterates over all butterflies using

* a stage, group and butterfly counter

*/

for (i=0; i<estg; i++)

{

grup=grup/2;

for (j=0; j<grup; j++)

{

for (k=0; k<butf; k++)

{

ind1=j*2*butf+k;

ind2=ind1+butf;

arg=grup*k;

temp=x[ind2]*WN
arg;

x[ind2]=x[ind1]-temp;

x[ind1]=x[ind1]+temp;

}

}

butf=butf*2;

}

• FFT-DIT

The computation of the Discrete Fourier Transform

20F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• The decimation in frequency FFT algorithm (DIF)

– structure

• Instead of structuring the DFT computation on the basis of a successive
decomposition of the x[n] input sequence into shorter sequences, the FFT-
DIF algorithm implements a successive decomposition of the output X[k]
sequence into shorter sequences, such that these are computed using
shorter DFTs. Admitting to simplify that N is a power of two number, we have
for the first level of decomposition and considering even-indexed ouputs:

and, also, for the odd-indexed outputs:

The computation of the Discrete Fourier Transform

21F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

DFT
(N/2)

DFT
(N/2)

X[0]

X[2]

X[4]

X[6]

X[1]

X[3]

X[5]

X[7]
WN

3

WN
2

WN
1

WN
0

-1

-1

-1

-1

Considering N=8, the previous equations give rise to the following structure:

The computation of the Discrete Fourier Transform

22F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

By iterating this procedure of splitting the DFT computation into shorter DFTs,
we get to the following structure, considering N=8 (where the WN/b

a coefficients

have already been replaced by WN
ab):

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]
WN

3

WN
2

WN
1

WN
0

-1

-1

-1

-1

WN
2

WN
0

-1

-1

WN
2

WN
0

-1

-1

WN
0

-1

WN
0

-1

WN
0

-1

WN
0

-1

The computation of the Discrete Fourier Transform

23F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– Conclusions relative to the FFT-DIF algorithm

 by comparing the structure of the previous slide with that of slide 17 that is
relative to the FFT-DIT, it can be concluded that the structure of the FFT-DIF
algorithm results from a transposition of that of the FFT-DIT algorithm,
consisting of a reversal of the signal flow in all branches, an exchange
between derivation nodes and summation nodes, and an exchange between
inputs and outputs. In particular, the DIF butterfly results from the
transposition of that of the DIT butterfly:

 It results from the previous that:

– as it happens with the DIT algorithm, it is also true with the DIF algorithm that the
number of butterflies per stage is N/2 and that the total number of arithmetic
operations is N/2log2N multiplications and Nlog2N complex additions,

– being a transposition of the DIF algorithm, the DIF algorithm also allows the “in-
place” computation,

– contrarily to the DIT algorithm, the inputs of the DIF algorithm are sequentially
ordered while the outputs are “bit-reversed” ordered which requires a reordering to
the natural sequential order that can be done using the same “bit-reversal”
algorithm already seen for the FFT-DIT.

xm-1[p]

xm-1[q]

Xm[p]

Xm[q]

stage m-1 stage m

position p

position q
WN

r

-1

The computation of the Discrete Fourier Transform

24F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

• Implementation particularities

– on the necessity of “bit-reversal”

• in addition to the implementation structures discussed in the previous slides,
other alternatives exist [see Oppenheim, sections 9.3 and 9.4] including a
modified FFT-DIT algorithm that considers sequentially ordered inputs and
“bit-reversed” ordered outputs, or a modified FFT-DIF algorithm that
considers “bit-reversed” ordered inputs and sequentially ordered outputs.
These alternatives may be combined in such a way that there is no need for
any bit-reversal reordering in a system including signal analysis and
synthesis. For example, in the implementation of the circular convolution, the
direct DFTs of the two inputs may be realized using the FFT-DIF algorithm
(the corresponding outputs will be bit-reversed ordered) and may be subsequently
multiplied. The result keeps the bit-reversed order and may be presented at
the input of an inverse DFT that is implemented using an FFT-DIT algorithm.
The end result will then be sequentially ordered, as desired.

The computation of the Discrete Fourier Transform

25F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– Computation of the WN
r coefficients

• According to the assessment of the most critical issues in each application in
terms of processing power or memory, we may prefer to store all necessary
WN

r coefficients, or to compute them “on-the-fly” when they are needed. In
the first case tables of the values of cos() e sin() functions are needed

that may, however, be optimized to avoid redundancies. In the second case,
it is possible to compute the coefficients recursively: WN

r = WN
r-1 WN but care

must be taken in order to avoid the propagation of representation or
rounding errors (i.e., due to the finite resolution) that are particularly critical in the
case of fixed-point processing.

– Case when N is not a power-of-two number

• We have described the radix-2 decomposition but other possibilities exist
such as radix-4 or a combination of radix-2 and radix-4, that is, mixed radix,
that offer other computational advantages when N is a power of 4 or a
combined power of 2 or 4. Computational gains are also possible when N is
a composite integer number, i.e., it can be expressed as a product of two
integer numbers. In these cases it is also possible to develop fast
computational algorithms although their structure and indexing scheme are
more complicated than those described here.

The computation of the Discrete Fourier Transform

26F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– the IDFT computation using the DFT

• the development of the DIT and DIF algorithms has been illustrated using
the particular case of the DFT implementation. Although it is easy to adapt
the previous discussion to the case of the IDFT implementation, there is a
practical interest understanding how the utilization of an FFT algorithm
implementing the direct DFT transform may be used to compute the inverse
DFT. With this purpose in mind, and because the substantive differences
between the DFT and IDFT are the sign of the complex exponential and the
multiplicative 1/N factor, we describe three alternatives:

1- as we have the following possible approach:

DFT
m{X[]}

e{X[]}

 m{x[n]}

e{x[n]}

-1

1/N

-1/N

The computation of the Discrete Fourier Transform

27F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

2- as we have the following possible approach:

3- as we have the following possible approach:

DFT
m{X[]}

e{X[]}

 m{x[n]}

e{x[n]}
1/N

1/N

DFT
X[] x[n]

1/N
[()N] [(-)N]

X[(-)N]

(circular inversion)

X[] X[N-], =0,1, … , N/2-1

NOTE: naturally, one may also write:

The computation of the Discrete Fourier Transform

28F
E

U
P

-D
E

E
C

,
N

ov
em

be
r

21
,
20

2
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

– the DFT of real signals

• In general, the DFT and IDFT equations presume complex inputs and
outputs. However, it occurs frequently that the data at the input of a DFT is
real, or that the data at the output of an IDFT is real, despite the fact that
signals are processed in the complex frequency domain for example. In
these cases, the utilization of a complex DFT or IDFT represents a
computational inefficiency since the imaginary part of the data vector is zero.
Two particularly interesting cases that occur frequently in practice are
addressed that eliminate that inefficiency:

1- the computation of the DFTs of two real signals, whose length is N, using a
single complex DFT of length N, and

2- the computation of the DFT of a real signal whose length is N using a single
complex DFT of length N/2.

The computation of the Discrete Fourier Transform

29F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

1- DFTs of two real-valued signals of length N

 If x1[n] and x2[n] are two real-valued signals of length N, their DFTs comply with the
following symmetry:

by constructing the signal y[n]= x1[n] + j x2[n], we have:

and also:

and conjugating both sides of this equation, leads to:

which, when combined with the first equation, allows to recover X1[k] and X2[k] :

F

even part of the real
component of Y[k]

even part of the imaginary
component of Y[k]

odd part of the imaginary
component of Y[k]

odd part of the real
component of Y[k]

The computation of the Discrete Fourier Transform

30F
E

U
P

-D
E

E
C

,
N

o
ve

m
be

r
2

1,
 2

02
2

F
un

d
am

en
ta

ls
 o

f
S

ig
n

al
 P

ro
ce

ss
in

g
, w

ee
k

10

© AJF

2- DFT of a real-valued signal whose length is N

 is x[n] is a real-vaçued signal whose length is N, and as discussed in the
presentation of the “decimation-in-time” algorithm, it is possible to compute its DFT
using two DFTs of length N/2:

This way, it is sufficient to compute the DFTS G[k] and H[k] , whose length (i.e.,

periodicity) is N/2, and then combine them as performed for the last stage of an FFT-
DIT algorithm. As G[k] and H[k] are the Fourier transforms of two real-valued
sequences of length N/2, it is possible, as seen in the previous slide, to compute
them using a single complex FFT of length N/2 and whose input is:

y[n]=g[n]+jh[n]=x[2n]+jx[2n+1] , 0nN/2-1.

The computation of the Discrete Fourier Transform

