ASAVL Summary

« Frequency-domain representation of discrete signals and systems

— Response of an LTI system to a complex exponential
— Fourier representation of a discrete-time sequence

A Review of the discrete-time Fourier Transform (DTFT)

— Symmetry properties of the Fourier Transform
— Theorems regarding the Fourier Transform
— Table of Fourier pairs

The DTFT of the auto-correlation and of the cross-correlation

— the DTFT of the auto-correlation
— the DTFT of the cross-correlation
— examples
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S [\ P Frequency-domain representation of discrete signals & systems

* Question: what is the output of an LIT system when the input is a
complex exponential ? x[n]= e’

— < N<+0

2

+c0

wn)= Y xnlhln—k] = f] Wk n— k] = f ke’ = f hkle e’ = He™ )’

k=—o0

— Answer: it's the complex exponential possibly modified in magnitude and
phase according to the frequency response of the LIT system.

— Note: this result reveals that ei*" is an eigen function of the LTI system and
that H(el®) is the eigen value of the system at the angular frequency o radians.

 Definition of the frequency response of an LIT system

(obtained by computing the Fourier transform of its impulse response)

H(eja) )i i h[n]e—j(on _ ‘H(ej(o }esz(eﬂ")

n=—00

— |H(el®)] — absolute value of the frequency response of the system

— ZH(e®*) — phase of the frequency response of the system ,
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S [\ P Frequency-domain representation of discrete signals & systems

— Example: what is the response of an LTI system, with h[n] real, to the input
X[n]=Acos(wgh+d) ?

: : AT i e
— Answer: x[n] may be expressed in a convenient way: x[n]= E[ej (mtd) 4 g (“0”*‘”]

and then:
ylnl= g [H(ejmo )ej(mon+¢) + H(emo )ej(momm ] = A‘H(ef‘”0 ] cos[a)on +P+ AH(e”'“’0 )]

— Important property of H(el®)
given the periodicity of the discrete complex exponential, el*", the frequency
response H(e®) is periodic with period 2r, so that in order to characterize it
completely, it is sufficient to represent the magnitude and phase considering a
frequency extension of 2r radians, e.g., between -t and += or 0 and 2x.

— Example: what is the frequency response of a moving-average filter of length 5 ?

1/5

g 1/S 0sn<4 {HH
)= 0 outros ...:

3-2-10 1 2 3 4 n
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S [\ P Frequency-domain representation of discrete signals & systems
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— Answer: using the definition of the time-discrete Fourier transform:

H(e) ¢

1-e’” 5 @

7‘]’5(.) Sil’l — )
— le—j,?(o 2 — ‘H(ejm ]ejéH(ef )

sIn —
2

- -4/ -27/5

2n/5 4r/5 +m1
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NOTE 1: the magnitude function is even.
NOTE 2: the phase function is odd.

Question 1: why is that
ZH(e®) # 20 ?
(note that -1=¢47)

Question 2: why is that in this
representation of ZH(el®) we
say the phase is wrapped ?

(what 1s the fundamental period
in the representation of phase ?)
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S [\ P Fourier representation of a discrete sequence

X[n] = L TX(ejm kj(o”da) < F > X(ej(v)): ’X(ej(,) }ejéX(ejw) _ i x[n]e‘f‘m

-7 n=—auww

» the Fourier transform of a discrete signal x[n] is periodic with period 2n
and exists if x[n] is absolutely summable

» the inverse Fourier transform allows to synthesize x[n] using a period of
its representation in the frequency domain

— Example:

+0 +90 1

xinl=a'uln] > X(e”)=Y ae ™ =3 (a7 ) =

N —jo
n=0 n=0 A 1—ae

H

if Jagio| <1 .. Ja|<1
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S [\ P Fourier representation of a discrete sequence

« Example: what is the impulse response of an ideal low-pass filter ?
Hpp(e) |

»

@,

1 7 o) 1 . sin n@
o) < s> N nl=— | H,\e’ e/ "do=— |e/"do = <
HPB(eJ ) < > PB[ ] 2}_‘_:[ _pB( )e . __([ -
OJC/ T -0 < n < oo
o
-3
o) o

hPB [n] NOTE: hpg[n] consists of an IIR non-

causal system that is not realizable !

9o /??T?C(Blujc_z _10123I°Lll$iih )

NOTE+: the response hpg[n] is not absolutely summable, but its square is summable, which

highlights the fact that a filter resulting fom hpg[n] by limiting its length, is the best
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S [\ P Fourier representation of a discrete sequence

— special cases

these are special cases because they are neither absolutely summable nor
square-summable, they arise from the theory of generalized functions but they
are very important in the analysis of signals and discrete systems:

* tfrain of impulses

unitary Dirac
impulses +o0 ~N 7~ o impulses
\ > S[n—1] > 278 (w+k2r) /
(=— k=—w
F
1 >- < > < 271

- Bl

Vn y

1

W
1

\)

10 1 2 3 4
* unitary complex exponential

eja)on F kz 2r6(w—w, +k2r)

« unitary step F
uln]

A4n 2n 0 2n 4n 67 8¢

y 3
v

1

1__efjm
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+ Z/‘T5(60+ k2r)
fr=—w

© AJF

®



S [\ P Symmetry properties of the time-discrete Fourier transform

— given x[n] , we may express X[n]=x.[n]+X,[n] where:

x.[n] = %(x[n] P

« X.[n] is the conjugate symmetric sequence of x[n]; in case x[n] is real,
X,[N] is also known as the even component of x[n] since X,[N]= X[-N]

x,[1] = %(x[n] —x[n])= —x[-n]

* X,[n] is the conjugate anti-symmetric sequence of x[n]; in case x[n] is real,
X,[Nn] is also known as the odd component of x[n] since X [N]= -X,[-N]

— similarly, X(el®) = X (el®) + X (el*)

)= 3l exle -l )

« X, (el®) is the conjugate symmetric function of X(el®), X (el*) is also said
the even component of X(el®) when X(e®) is real

x, ()= [xler)-xo e - )

[ o

« X, (el®) is the conjugate anti-symmetric function of X(el®), X (el*) is also
said the odd component of X(el*) when X(el®) is real 8
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S [\ P Main symmetry properties of the time-discrete Fourier transform

xn]  __F

(complex)

X(ei)

Xln) | xe)
X' [-n] * (e jo )
s.R{)C[I’I]} m conjugate symmetric part of X(e/®)

conjugate anti-symmetric part of X (&)
x,[n] X (e’ i }‘
x,|n] ]S{X(e”’ )}

o

~
a
=
IS
Ban'end

m&
N

X[n]
(real)

> X(°)=Xy(e?) HjX5(e)= X (e7)
i.e. the transform is conjugate symmetric :
Xm(ej(o):Xm(e—jm)

il | ) ") fe )

x [n X (e’ ‘X(ej]‘( }
© AJF O[] JXJ( ) ( ):— ( ) ?
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S [\ P Review of the main Fourier transform theorems

(relate operations involving discrete sequences and the corresponding operations in the Fourier domain)

F

x[n], y[n] < > X(e), Y(e)
linearity ‘ax[n] + by[n] ‘ aX (ej“’ )+ bY (e"“’ )

shift in n xn—n,] e’ X (eﬂo) n, inteiro

shift in e e ] xleto ]

‘time’ reversal X[-n] X(e7®

. Co _dx(e’®) why is there no
differentiation in ® nx[n] J . .y .
do differentiation” in n ?

= convolution x[n]* yln] x(e”)-y(e')
&)
3‘\ 1 t 0 [(w-0)
éog product xn]-yln] ' J:T X (ej )Y(ej )dg (periodic convolution)
3 S
S 3 S " 1 =
& E Parseval theorem 2 xn-»v'[n] = - [x (e (e’ Jdeo
53 —
vy Vs
S g Parseval theorem = % X (ef‘”]zdw
Za : T
£ % (particular case) — |
N @ energy energy spectral density 10
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S [\ P Tabela de pares de Fourier

F

example: a"u[n], ’a’<1 x[n] «

o|n]
5[” o no]

ié’[n—ﬁ]

uln)

(n+Da"uln], |d<1

A
Q
2
o S I, 0sn<M
g
b = 0, outros
O AN
2 5
Ne)
=
S 2 cos(w,n+ @)
5 93
n g -
= B sin nw,
2 8 nr
2z
s 2 sin @, (n+1
A o r" _P( )u[n], <1
© AJF sin @,

: |
> X(e'®) —_—
l1—ae™”
1
e—fﬂ””o
i 20 (w +k2m)
jra—

Z 2n0(w —w, +k2r)
k=—»

] 2

—+ ) 76 (w+k27)
l-e /e k=—o0
-ae :

sin(M+1)2
2.,

e,
sin —
2

T Z [emé(a) —w, +k2m)+e 7?5 (w + o, + k27r)]
fk=—m

L |o|<o,
0, w.< |a)‘ <7

1/(1-2rcoswpe @ +r2e )
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Question: what is a practical way to find the inverse Fourier transform ?

| F

« Example: X(¢’“)= : — causal -« > =9
xamp ") (1—ae’®)(1-be ') y x[n]
M )
“A(l—c[e*”’)
if M<N and poles are first-order, then: X (e’”) == = Z
] o 1 d e —jo
| |(0-d.e 7
H —jw o] k=1
with : 4, =(1-d.e )X ()| ,._,
and thUS 1 a/(a b) b/(b a)

(1-ae )1-be ') 1—ae® ke e

which leads to: x(n) =

I

Not to forget !

f b a"u[n]+ bib”u[n]
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S [\ P The DTFT of the auto-correlation and of the cross-correlation
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« the DTFT of the auto-correlation
the auto-correlation is defined as (in this discussion, we admit energy signals)

+ 00

r.[6] = x[£] * x*[—£] = Z x[k] x* [k — £]

k=—o0

considering the DTFT properties

F .
x[f] —— X(ef‘“)
F .
x°[f] ——  X*(e7)
F .
x[—f] X(e‘f‘“)
F .
2~ ——  X"(e/*)
then
. [£] = x[£] * x*[—£] N R.(e/?) = X(e/®) - X*(e/?) = |X(ef“))|2

Where R, (e/®) = |X(ej“))|2 is called the spectral density of energy
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* the DTFT of the auto-correlation (cont.)
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The DTFT of the auto-correlation and of the cross-correlation

— the Wiener-Khinchine Theorem: the auto-correlation and the spectral
density of energy form a Fourier pair

nlf] —— Ry(e/®) = |[x(ef®)[’

thus,

T
1 . .
Tx[f] = % fR(ef‘”) ef“’{}da)
-1

and, in particular, the energy of the signal can be found using

T

V[

+oo 1 | 1 o

E =n[0] = Zk:_oolx[/’dl2 =5 | R(¢/*)dw = o j|X(€"”)| dw
—-TT —-TT

which reflects the Parseval Theorem
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S [\ P The DTFT of the auto-correlation and of the cross-correlation

« the DTFT of the cross-correlation
the cross-correlation is defined as (we admit energy signals)

+ 00

oy l€] = x[]+y' (=01 = ) xlkly[k— 4]

k=—o0

considering the DTFT properties

x[#] N X(e/®)
F .
y[¢] — Y(e/?)
F .
Y[l —— v (e®)
F .
y[-f] —— Y(e7®)
F .
Y[ — Y (el?)

then

rey[0] = x[£] 5y [—f] >  Rey(e/®) = X(e7) - Y*(eI®)
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S [\ P The DTFT of the auto-correlation and of the cross-correlation

 examples

let us admit two discrete-time signals, x[n] and y[n]

y[n] 3

x[n] 3
s ]
O 1 2 0 2

n 1

v

it can be easily concluded that

F . ) )
x[£] = 36[€] +26[£ — 1]+ 8[¢ —2] «— X(e/®)=3+2e7/® + ¢ J2®

F . ) )
y[£] = 8[€] + 26[¢ — 1] + 38[£ — 2] «—— Y(e/?) =1+ 2e7/® + 3772

R.(e/%) = 3e/2% + 8e/® + 14 + 8e /¥ 4+ 3e7/2% = R ,(e/®), (why ?)
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