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Summary

• Frequency-domain representation of discrete signals and systems

– Response of an LTI system to a complex exponential

– Fourier representation of a discrete-time sequence

• A Review of the discrete-time Fourier Transform (DTFT)

– Symmetry properties of the Fourier Transform

– Theorems regarding the Fourier Transform

– Table of Fourier pairs

• The DTFT of the auto-correlation and of the cross-correlation

– the DTFT of the auto-correlation

– the DTFT of the cross-correlation

– examples
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• Question: what is the output of an LIT system when the input is a 

complex exponential ?

– Answer: it’s the complex exponential possibly modified in magnitude and 
phase according to the frequency response of the LIT system.

– Note: this result reveals that ejn is an eigen function of the LTI system and 
that H(ej) is the eigen value of the system at the angular frequency  radians.

• Definition of the frequency response of an LIT system 
(obtained by computing the Fourier transform of its impulse response)

– |H(ej)|    absolute value of the frequency response of the system

– H(ej)    phase of the frequency response of the system

Frequency-domain representation of discrete signals & systems
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Frequency-domain representation of discrete signals & systems

– Example: what is the response of an LTI system, with h[n] real, to the input 
x[n]=Acos(0n+) ?

– Answer: x[n] may be expressed in a convenient way:

and then:

– Important property of H(ej)

given the periodicity of the discrete complex exponential, ejn, the frequency 
response H(ej) is periodic with period 2, so that in order to characterize it 
completely, it is sufficient to represent the magnitude and phase considering a 
frequency extension of 2 radians, e.g., between - and + or 0 and 2.

– Example: what is the frequency response of a moving-average filter of length 5 ?

-3 -1 1 2 3 n-2 0

1/5

……

4
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– Answer: using the definition of the time-discrete Fourier transform:

-


+-2/5 2/5 4/5-4/5

1

|H(ej)|

-

+-4/5



H(ej)

4/5

-4/5

-3/5

3/5

4/5

-

NOTE 1: the magnitude function is even.

NOTE 2: the phase function is odd.

Question 1: why is that

H(ej)  -2 ?

(note that -1=e±j)

Question 2: why is that in this 
representation of H(ej) we 
say the phase is wrapped ?

(what is the fundamental period 
in the representation of phase ?)

Frequency-domain representation of discrete signals & systems
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Fourier representation of a discrete sequence

F

• the Fourier transform of a discrete signal x[n] is periodic with period 2
and exists if x[n] is absolutely summable

• the inverse Fourier transform allows to synthesize x[n] using a period of 
its representation in the frequency domain

– Example:

F

if |ae-j| < 1    |a| < 1
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• Example: what is the impulse response of an ideal low-pass filter ?

-2


2c
-

1

HPB(ej)

-c


F

- < n < +

-4 -1 1 2 3 n0 4

c/

……

NOTE: hPB[n] consists of an IIR non-
causal system that is not realizable !

NOTE+: the response hPB[n] is not absolutely summable, but its square is summable, which

highlights the fact that a filter resulting  fom hPB[n] by limiting its length, is the best

approximation, in the mean-square sense, to HPB(ej) (i.e. to the ideal filter).

hPB[n]

Fourier representation of a discrete sequence



7

S
ta

ti
st

ic
al

 S
ig

na
l 

P
ro

ce
ss

in
g

, w
ee

k
 1

F
E

U
P

-D
E

E
C

, 
S

ep
te

m
be

r 
20

, 2
02

2

© AJF

– special cases

these are special cases because they are neither absolutely summable nor 
square-summable, they arise from the theory of generalized functions but they 
are very important in the analysis of signals and discrete systems:

• train of impulses

• unitary complex exponential

• unitary step

F

-3 -1 1 2 3 n-2 0

1

……

4 -2 2 4 6 -4 0

2

…

8

unitary

impulses

Dirac

impulses

F

F

…

Fourier representation of a discrete sequence
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Symmetry properties of the time-discrete Fourier transform

– given x[n] , we may express x[n]=xe[n]+xo[n] where:

• xe[n] is the conjugate symmetric sequence of x[n]; in case x[n] is real, 

xe[n] is also known as the even component of x[n] since xe[n]= xe[-n] 

• xo[n] is the conjugate anti-symmetric sequence of x[n]; in case x[n] is real, 

xo[n] is also known as the odd component of x[n] since xo[n]= -xo[-n] 

– similarly, X(ej) = Xe(e
j) + Xo(e

j)

• Xe(e
j) is the conjugate symmetric function of X(ej), Xe(e

j) is also said 
the even component of X(ej) when X(ej) is real

• Xo(e
j) is the conjugate anti-symmetric function of X(ej), Xo(e

j) is also 

said the odd component of X(ej) when X(ej) is real
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Main symmetry properties of the time-discrete Fourier transform

Fx[n]
(complex)

X(ej)

conjugate symmetric part of X(ej)

conjugate anti-symmetric part of X(ej)

Fx[n]
(real)

X(ej)=X(ej) +jX(ej)= X*(e-j)

i.e. the transform is conjugate symmetric :
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Review of the main Fourier transform theorems

F
x[n], y[n] X(ej), Y(ej)

linearity

(relate operations involving discrete sequences and the corresponding operations in the Fourier domain)

shift in n

shift in 

‘time’ reversal

differentiation in 
why is there no

“differentiation” in n ?

convolution

product

Parseval theorem

Parseval theorem

(particular case)

(periodic convolution)

energy spectral densityenergy

nd inteiro

=

=
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Tabela de pares de Fourier

F
x[n] X(ej)

1

example:
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Question: what is a practical way to find the inverse Fourier transform ?

• Example:                                              , causal
F

x[n]= ?

if M<N and poles are first-order, then:

with :

and thus:

which leads to: 

Not to forget !
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The DTFT of the auto-correlation and of the cross-correlation

• the DTFT of the auto-correlation
the auto-correlation is defined as (in this discussion, we admit energy signals)

�� ℓ = � ℓ ∗ �∗ −ℓ = � � �  �∗ � − ℓ
��

����

considering the DTFT properties

� ℓ      
     ℱ     

      � ���

�∗ ℓ      
     ℱ     

      �∗ ����

� −ℓ      
     ℱ     

      � ����

�∗ −ℓ      
     ℱ     

      �∗ ���

then

�� ℓ = � ℓ ∗ �∗ −ℓ      
     ℱ     

     �� ��� = � ��� � �∗ ��� = � ��� �

Where �� ��� = � ��� �
 is called the spectral density of energy
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The DTFT of the auto-correlation and of the cross-correlation

• the DTFT of the auto-correlation (cont.)
– the Wiener-Khinchine Theorem: the auto-correlation and the spectral 

density of energy form a Fourier pair

�� ℓ      
     ℱ     

     �� ��� = � ��� �

thus,

�� ℓ =
1

2�
� � ���  ���ℓ��

�

��

and, in particular, the energy of the signal can be found using

� = �� 0 = � � � �
��

����
=

1

2�
� � ��� ��

�

��

=
1

2�
� � ��� �

��

�

��

which reflects the Parseval Theorem
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The DTFT of the auto-correlation and of the cross-correlation

• the DTFT of the cross-correlation
the cross-correlation is defined as (we admit energy signals)

��� ℓ = � ℓ ∗ �∗ −ℓ = � � �  �∗ � − ℓ
��

����

considering the DTFT properties

� ℓ      
     ℱ     

      � ���

� ℓ      
     ℱ     

      � ���

�∗ ℓ      
     ℱ     

      �∗ ����

� −ℓ      
     ℱ     

      � ����

�∗ −ℓ      
     ℱ     

      �∗ ���

then

��� ℓ = � ℓ ∗ �∗ −ℓ      
     ℱ     

     ��� ��� = � ��� � �∗ ���
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The DTFT of the auto-correlation and of the cross-correlation

• examples

let us admit two discrete-time signals, � � and y �

it can be easily concluded that

� ℓ = 3� ℓ + 2� ℓ − 1 + � ℓ − 2     
     ℱ     

    � ��� = 3 + 2���� + �����

� ℓ = � ℓ + 2� ℓ − 1 + 3� ℓ − 2    
     ℱ     

   � ��� = 1 + 2���� + 3�����

�� ��� = 3���� + 8��� + 14 + 8���� + 3����� = �� ��� ,  (why ?)

��� ��� = 9���� + 12��� + 10 + 4���� + �����

1 20

1

3

2

� �

� 1 20

1

3

2

y �

�


