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Overview

• discrete-time random processes
– filtering random processes

– spectral factorization

– Wold decomposition theorem

– special types of processes

• autoregressive moving-average processes (ARMA)

• autoregressive processes (AR)

• moving-average processes (MA)

• harmonic processes
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• filtering random processes

– linear shift-invariant filters are frequently used in applications involving 
signal band limiting, signal detection and estimation, deconvolution, signal 
representation and synthesis

– as the input may be a random process, it is important to determine how 
the statistics change from input to output

if x[n] is a WSS random process with mean mx and autocorrelation rx[] and if 
h[n] is the impulse response of a stable LTI filter 

review of discrete-time random processes
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• filtering random processes

if the impulse response of the LSI system is h[n]

• how is the output mean expressed as a function of the input mean and h[n] ?

• how is the cross-correlation expressed as a function of the input autocorrelation 
and h[n] ?

• how is the output autocorrelation expressed as a function of the input 
correlation and h[n] ?

• what is the deterministic autocorrelation of the system ?

LSI

system

x[n] y[n]

review of discrete-time random processes
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• filtering random processes
the mean of the output y[n] is

i.e. the mean of the output is the mean of the input scaled by the frequency 
response of the filter at DC (i.e. at =0)

on the other hand, the correlation between the output and input is given by

i.e. it results from the convolution between the autocorrelation of the input 
and the impulse response of the filter and depends only on the lag 

review of discrete-time random processes

Note: rxy[]=h*[-]*rx[]=ryx
*[-] 

but rxy[] rxy
*[-]
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• filtering random processes
using the previous result, we may find the autocorrelation of the output:

by setting m=+k and changing the summation index to m (since <)

now, since

we finally find

review of discrete-time random processes
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• filtering random processes
this result defines a quantity rh[] , which is the deterministic autocorrelation 

of the LSI system, and states that the autocorrelation of the output is 
simply the result of the convolution between the autocorrelation of the 
input and the deterministic autocorrelation of the system, in general:

– regarding the output variance, from the previous slide we have:

if the input is zero mean, then

and if it is white noise:

h[]
rx[] ryx[]

h*[-]
ry[]

review of discrete-time random processes
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in particular, if h[n] is finite in length (and zero outside the interval [0, N-1]), using 
the result of slide 43 (week 2), the output variance y

2 may also be written 
as (Rx is the autocorrelation matrix and h is vector of filter coefficients)

also, by noting that

then

in terms of the Z-transform:

and therefore:

review of discrete-time random processes

Note: for a stable system the 
unit circle z=ej lies within 
the ROCs of H(z) and H(z-1)
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Example: finding the autocorrelation at the output of a filter with transfer 
function H(z) when its input is white noise with variance x

2

partial fraction expansion of Py(z) leads to

the inverse Z-transform yields

review of discrete-time random processes
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• spectral factorization
– The power spectrum Px(e

j) of a wide-sense stationary process is a real-
valued, positive, and periodic function of . If Px(e

j) is a continuous 
function of  (i.e. it does not contain impulses), then it may be seen as 
describing the output of a stable discrete-time filter when its input is white 
noise having a variance of x

2, i.e. Px(e
j) may be factored as

In fact, if                                    is the power spectrum of a WSS stationary

process x[n], and if ln Px(e
j) is analytic in an annulus <|z|<1/, i.e. ln Px(e

j)
and all of its derivatives are continuous functions of z and can be 
expanded in a Laurent series:

where c[k] are the coefficients of the expansion (these coefficients may also be 

regarded as the cepstrum of the sequence rx[]), then

review of discrete-time random processes

Note: in the cepstral domain, the 
multiplicative factors H(z) and 
H*(1/z*) are additively separable due 

to the natural logarithm of Px(e
j)
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It should be noted that the coefficients c[k] are conjugate symmetric, in fact it 
is possible to write

and because Px(e
j) is real and so ln Px(e

j), it follows that the c[k]
coefficients are conjugate symmetric, i.e. c[k]=c*[-k] and thus

however, since

we may write: 

which reflects the spectral factorization of Px(e
j). A process which can be 

factored this way is called a regular process.

review of discrete-time random processes
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Since Q(z) is the z-transform of a causal and stable sequence c[k], it may be 
expanded into a power series in the form 

Also, since Q(z) and ln Q(z) are both analytic for |z|>, then Q(z) is a 
minimum phase filter. This means that for a rational function of z, all poles 
and zeros lie inside the unit circle of the z-plane. As a consequence, the 
inverse filter 1/Q(z) is also a causal and stable filter (and is a minimum phase 

filter).

Properties of a regular process

• innovations representation: any regular process may be realized as the output 
of a causal and stable filter that is driven by white noise having a variance of
0

2, 

Note: Q(z) is a monic 
polynomial, i.e. one for which 
the coefficient of the zeroth-
order term is equal to one.

H[z]
v[n] x[n]

Pv(z)=0
2 Px(z)=0

2H(z)H*(1/z*)

review of discrete-time random processes
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Properties of a regular process (cont.)

• innovations process: if x[n] is filtered with 1/H(z), then the output is white noise 
with variance 0

2, i.e. the inverse filter 1/H(z) is a whitening filter

If Px(z) is rational function                         then it may be factored as

where B(z) and A(z) are monic polynomials having all the roots within the unit 
circle. It should be noted that since the autocorrelation function of a WSS 
random process is conjugate symmetric, then the power spectrum Px(e

j)
is a real function of  and Px(z)=Px

*(1/z*)

1/H(z)
x[n] v[n]

Pv(z)=0
2Px(z)=0

2H(z)H*(1/z*)

review of discrete-time random processes



13

S
ta

ti
st

ic
al

 S
ig

na
l 

P
ro

ce
ss

in
g,

 w
ee

k
s 

4
/5

F
E

U
P

-D
E

E
C

, O
ct

o
b

er
 1

1/
1

8,
 2

0
2

2

© AJF

– Why for any rational power spectrum, factorization is possible: It should be 
noted that since the autocorrelation function of a WSS random process is 
conjugate symmetric, then the power spectrum Px(e

j) is a real function of 
 and Px(z)=Px

*(1/z*), this means that for each zero (or pole) in Px(z), there 
will be a matching zero (or pole) at the conjugate reciprocal location. 
Another (equivalent) way of looking at this is: since Px(e

j) is a real function 
of , then the combined filter Q(z)Q*(1/z*),whose region of convergence is 
<|z|<1/ (i.e. a ring) and includes the unit circumference (i.e. it is stable), 
has poles and zeros which occur in reciprocal and complex conjugate 
pairs,

• Illustration of the symmetry conditions for the zeros of the power spectrum

e

m

1

o
?

z0
*

o

o

o

o o

o

oz1
*

z0z1

1/z0
*

1/z0

z2
1/z2

review of discrete-time random processes
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• Wold decomposition theorem
– Any WSS random process may be decomposed into the sum of two 

orthogonal processes, a regular process xr[n] and a predictable (i.e. 

deterministic) process xp[n]

– corollary: general form for the power spectrum of a WSS process is

• Pxr(e
j) is the continuous part of the spectrum corresponding to the regular 

process

• the predictable part of the process gives rise to a line spectrum

review of discrete-time random processes
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• special types of random processes
– those processes that may be generated by filtering white noise with a 

linear shift-invariant filter that has a rational system function, these include 
the autoregressive (AR), moving average (MA), and autoregressive moving 
average (ARMA) processes

• autoregressive moving average processes (ARMA)
– white noise v[n] is filtered with a causal linear shift-invariant filter having a 

rational system function with p poles and q zeros

– since

H[z]
v[n] x[n]

Pv(z)=0
2 Px(z)=0

2H(z)H*(1/z*)

review of discrete-time random processes

Note: parametric pole-zero models describe a 
system with a finite number of parameters.
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• autoregressive moving average processes (ARMA)
– assuming that H(z) is stable, the output process x[n] is wide-sense 

stationary and if Pv(z)=v
2 then

in terms of 

• the power spectrum of an ARMA process contains 2p poles and 2q zeros with 
the reciprocal symmetry relationships discussed in slide 13

since x[n] and v[n] are related by

review of discrete-time random processes
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then, in order to find the relation between the autocorrelation of the output 
and the cross-correlation between output and input, we multiply both sides 
of the equation by x*[n- ] and take the expectation:

in order to find rvx[-k], since 

Note: h[n] may be found 
since the coefficients of 
the transfer function of 
the filter are known.

review of discrete-time random processes
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but since the input is white noise, i.e. 

and thus 

which leads to

Assuming that h[n]=0, n<0, i.e. that h[n]

is causal, then

with

Yule-Walker equations (important in e.g. signal modeling and spectrum estimation)

• relate filter coefficients and the autocorrelation sequence

• allow to extrapolate the autocorrelation sequence (for p) if pq and if the 
values rx[0], rx[1],…, rx[p-1] are known

Note: this result could also be found 
by using the result of slide 4 

and also the fact that

thus

and since

therefore

review of discrete-time random processes
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• autoregressive processes (AR)
– result for ARMA(p,q) processes when q=0, i.e. when B(z)=b[0]:

if rv[]= v
2[] (i.e. Pv(z)=v

2) then

and in terms of 

– the power spectrum of an AR(p) process contains 2p poles and no zeros 
(except those at z=0 and z=)

review of discrete-time random processes
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• autoregressive processes (AR)
– since for an AR(p) process b[0]=h[0], then c[0] in the Yule-Walker 

equations (slide 18) is c[0]= b[0]b*[0]=|b[0]|2, thus

which, in matrix form, makes that the Yule-Walker equations become

these equations allow e.g. to

• find the coefficients a[k] from the autocorrelation sequence rx[]

• to generate the autocorrelation sequence from a given set of filter coefficients

review of discrete-time random processes
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• autoregressive processes (AR)
– Example: finding the coefficients a[k] from the autocorrelation sequence 

rx[] of a real-valued AR(1) process 

assuming v
2 =1 and using the property for real-processes that rx[]=rx[-], the 

the Yule-Walker equations reduce to

from which we obtain 

and thus

review of discrete-time random processes
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• autoregressive processes (AR)
– Example: generating the autocorrelation sequence from a given set of 

filter coefficients (first-order AR process)

since

assuming v
2 =1 and using the property for real-processes that rx[]=rx[-], the 

the Yule-Walker equations reduce to

from which we obtain 

also, as in general 

then                                                       or (rx[]=rx[-])

review of discrete-time random processes
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• moving average processes (MA)
– result for ARMA(p,q) processes when p=0, i.e. when A(z)=1:

in this case, x[n] is generated by filtering white noise with an FIR filter

if rv[]= v
2[] (i.e. Pv(z)=v

2) then, an MA(q) process has power spectrum

and in terms of 

– the power spectrum of an MA(q) process contains 2q zeroes and no poles 
(except those at z=0 and z=)

– using the results of slide 18 and noting that h[n]=b[n]

review of discrete-time random processes
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• moving average processes (MA)
then

considering that rx[]=rx[-], we may also write

which helps to emphasize that if   [-q, q] , then rx[]=0 also, rx[] depends 
non-linearly on the MA parameters b[k], e.g. for an MA(2) process 

which makes it more difficult (than for an AR process) to estimate the MA 
parameters.

– MA processes are characterized by slowly changing functions of 
frequency that have sharp nulls in the spectrum if Px(z) contains zeros that 
are close to the unit circle.

Note: this result is in line 
with those in slide 5.

review of discrete-time random processes
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• Harmonic processes
– provide useful representations for random processes that arise in 

applications such as array processing, when the signals contain periodic 
components

– an example of a WSS harmonic process is the random phase sinusoid

where A and 0 are constants and  is a random variable uniformly 
distributed in the range [-, [; as a result, the autocorrelation of x[n] is 
periodic with frequency 0

and the power spectrum is

if the amplitude is also a random variable that is uncorrelated with , then

review of discrete-time random processes
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• Harmonic processes
– higher-order harmonic processes may be formed from a sum of random 

phase sinusoids:

if k are pairwise independent and if the random variables k and Ak are 
uncorrelated, the autocorrelation sequence is

and the power spectrum is

– In the case of the sum of L complex uncorrelated harmonic processes

review of discrete-time random processes

Note: the harmonic process is 
predictable because any given 
realization is a sinusoidal sequence with 
fixed amplitude, frequency and phase.


