Semantic Web and Linked Data

Liliana Ferreira 2022/23

Class 3: Learning Objectives

- Practical work by Laws and selection.
- RDF vocabulary and serialization.
- Practical exercise 1:
 - Publishing data on the Semantic Web;
 - Learn to read and write RDF.

RDF Syntax

- The RDF data model provides an abstract, conceptual framework for defining and using metadata.
- A concrete syntax is also needed for the purposes of creating and exchanging this metadata.

- RDF defines a number of resources and properties;
- RDF vocabulary is defined in the namespace:
 - http://www.w3.org/1999/02/22-rdf-syntax-ns#

The vocabulary defined by the RDF specification is as follows:

- Classes:
 - rdf:Property, rdf:Statement,rdf:XMLLiteral
 - rdf:Seq,rdf:Bag,rdf:Alt,rdf:List

Properties:

- rdf:type, rdf:subject, rdf:predicate, rdf:object,
- rdf:first,rdf:rest,rdf:_n
- rdf:value

• Resources:

• rdf:nil

Classes & Resources

- rdf:XMLLiteral the class of XML literal values,
- rdf:Property the class of properties,
- rdf:Statement the class of RDF statements,
- rdf:Alt, rdf:Bag, rdf:Seq containers of alternatives, unordered containers, and ordered containers (rdfs:Container is a super-class of the three),
- rdf:List the class of RDF Lists,
- rdf:nil an instance of rdf:List representing the empty list.

Properties

- rdf:type an instance of rdf:Property used to state that a resource is an instance of a class,
- rdf:first the first item in the subject RDF list,
- rdf:rest the rest of the subject RDF list after rdf:first,
- rdf:value idiomatic property used for structured values,
- rdf:subject the subject of the RDF statement,
- rdf:predicate the predicate of the RDF statement,
- rdf:object the object of the RDF statement.

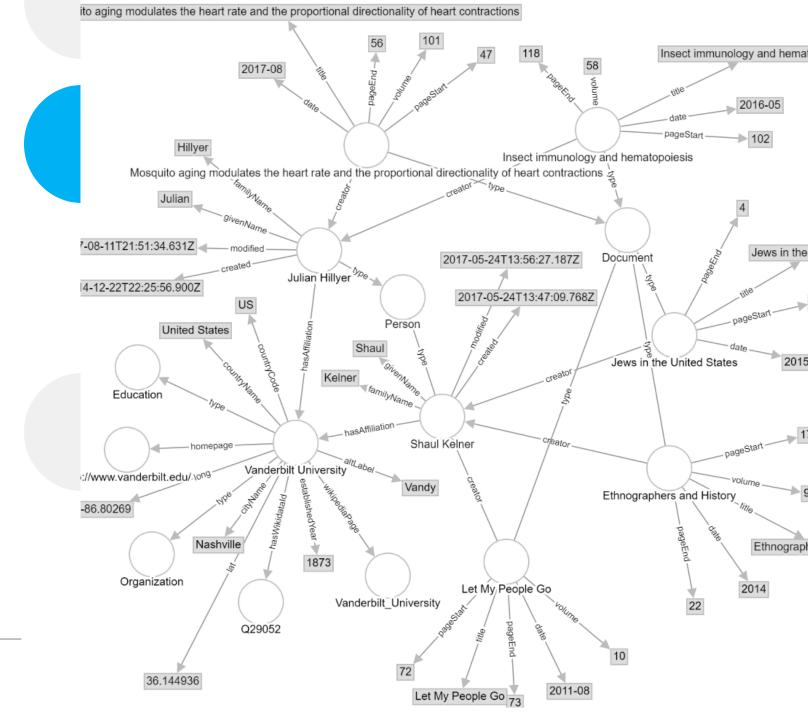
Typing using rdf:type:

```
<A, rdf:type, B>
"A belongs to class B"
```

• All properties belong to class rdf:Property:

```
<P, rdf:type, rdf:Property>
"P is a property"
```

```
<rdf:type, rdf:type, rdf:Property>
"rdf:type is a property"
```



RDF Serializations and Triplestores

- Since RDF is an abstract model for expressing information about graphs, it can be expressed in a number of concrete ways.
- One way that is particularly easy for humans to understand is a graphical diagram.

RDF Serializations

 The triples in this table form a graph that can be represented by this diagram.

RDF Serializations

- However, it is generally not possible for machines to interpret graphs that are expressed as diagrams.
- Machines need an RDF serialization, a method of transmitting or storing the information about the triples in the graph as a file.

RDF graphs as files

- In WSLD, we will mostly use <u>Turtle</u>
- Others:
 - There is an XML-based syntax: RDF/XML
 - There is a JSON-based syntax: JSON-LD
 - There is an easy to parse, line-based triple syntax: N-Triples
 - There is a syntax to embed RDF in HTML and XML documents: RDFa

The Turtle RDF syntax

- Turtle stands for "Terse RDF Triple Language".
- N-Triples is a subset of the RDF Turtle serialization, meaning that any file that is valid N-Triples is also valid Turtle serialization.
- However, Turtle allows compact URIs (CURIEs) and also allows shortcuts to prevent repeating parts of triples.

The Turtle RDF syntax

 For example, if several triples share the same subject, the predicates and objects can be listed, separated by semicolons.

• Full IRIs:

```
<http://www.example.com/test#this>
```

A simple triple:

• Abbreviated IRIs (declare prefixes at the beginning of the file):

```
# This is a comment
@prefix ex: <http://www.example.com/test#> . # end dot!
@prefix rel: <http://relations.example.com/> .
ex:this rel:in ex:box . # Another comment
```


The Turtle RDF syntax

- The namespace prefixes that are used in the triples must be listed in a prolog at the start of the document.
- Notice that URIs aren't required to be abbreviated.

Literals:

```
ex:this rel:date "2019-09-13"^^xsd:date . # normal literal ex:this rel:name "this"@en . # language-tagged literal ex:this rel:code "TX32" . # xsd:string can be omitted ex:this rel:number 42 . # xsd:integer (no quotes) ex:this rel:sizeInMeters 3.75 . # xsd:decimal (use a dot)
```


 If two triples share both the same subject and predicate, the two objects can be separated by commas. For example:

```
ex:box rel:contains ex:this .
ex:box rel:contains ex:that .
# can be written
ex:box rel:contains ex:this, ex:that . # comma
```


Repeat object

```
ex:this rel:date "2019-09-13"^^xsd:date;
rel:name "this"@en; # new lines are optional
rel:code "TX32";
rel:nextTo ex:that, ex:thoot, ex:thus.
```


- Turtle also allows a special abbreviation for the important predicate rdf:type. It can be replaced with a .
- Hence, the triple:

```
<http://dbpedia.org/resource/Bob_Marley> <http://www.w3.org/1999/02
/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
```

can be shortened in Turtle to:

```
dbr:Bob_Marley a foaf:Person
```


RDF text files in Turtle serialization are usually given the file extension .ttl

 Let us learn to read and write Turtle in an online editor. Go to: https://perfectkb.github.io/yate/

Further reading

- Semantic Web Stack
- RDF 1.1 Primer
- RDF 1.1 Concepts and Abstract
- https://www.w3.org/TR/turtle/