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Overview
• discrete-time random processes

– ensemble averages

– autocorrelation of the sum of uncorrelated random processes

• the harmonic process, Gaussian processes

– stationary processes

• strict sense and wide sense stationarity

– autocorrelation and autocovariance matrices

• eigenvalues and eigenvectors of autocorrelation matrices

– linear transformation of random vectors

– innovations representations of random vectors

• eigenanalysis and the Karhunen-Loève transform

• the KLT of periodic random sequences

• LDU decomposition and UDL decomposition

• generation of real-valued random vectors with given second order moments

– ergodicity

• ergodicity in the mean and ergodicity in the autocorrelation

– white noise

– the power spectrum

• Properties

– sum of independent random variables
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• discrete-time random processes
– is a mapping from the sample space  (of experimental outcomes) into a set 

of discrete-time signals x[n]; thus a discrete-time random process is a 
collection (i.e. ensemble) of discrete-time signals

review of discrete-time random processes

n
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– each sample of the discrete-time signal x[n] is a random variable that is 
characterized by a probability distribution function

and a probability density function

In general, a complete statistical characterization of a random process, in 
addition to the first-order density functions, requires that joint probability 
distribution or density functions be specified for collections of random 
variables (describing how they relate to each other) -which may be difficult or 
impossible to get...

• ensemble averages
– first-order statistics that depend on n :

mean of the process      

variance of the process

review of discrete-time random processes

Note 2: the variance represents 
the average squared deviation of 
the process away from the mean

Note 1: the mean represents the 
average value of the process as a 
function of n 
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• ensemble averages
– relating the random variables x[k] and x[] (of the same process):

autocorrelation :

autocovariance :

both are related as :      

 the autocovariance and the autocorrelation functions provide information 
about the degree of linear dependence between two random variables of 
the same process (i.e. they characterize the ‘memory’ of the process)

review of discrete-time random processes

Note: for zero-mean random 
processes, the autocovariance 
and the autocorrelation are equal
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• ensemble averages
– if the random variables x[k] and y[] belong to different processes:

cross-correlation :

cross-covariance :

and also :

– two random processes x[n] and y[n] are uncorrelated if, for all k and  :

– two random processes x[n] and y[n] are orthogonal if, for all k and  :

review of discrete-time random processes

Note: zero-mean uncorrelated processes 
are always orthogonal, however, 
orthogonal processes are not necessarily 
uncorrelated
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• autocorrelation of the sum of uncorrelated random 
processes
– data acquisition is usually contaminated by noise which typically is 

considered as additive, if x[n] is the signal and w[n] is the noise, then the 
signal is recorded as 

and thus :

usually, noise is assumed to be zero-mean and uncorrelated with the signal :

which reveals that the autocorrelation of the sum of uncorrelated (and zero-

mean) random processes is equal to sum of the autocorrelation of the 
individual processes 

review of discrete-time random processes
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• example: the harmonic process
– the harmonic random process is important radar and sonar signal 

processing, a simple example of a real-valued harmonic is the random 
phase sinusoid (A and 0 are constants and  is a random variable uniformly 

distributed in the range [-, [ )

the PDF for  is

and thus :

concerning the autocorrelation:

i.e. the autocorrelation is only a function of the difference between k and 

review of discrete-time random processes
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• example: the harmonic process
– if a more general case is considered (Am and m are constants and m are 

uncorrelated random variables uniformly distributed in the range [-, [ , v[n]

represents zero-mean additive noise that is uncorrelated with the sinusoids)

since the random variables m are uncorrelated, a given sinusoidal process is 
uncorrelated with the others, and since the noise is also uncorrelated with 
the sinusoids, it can be shown that

where rv[k,] is the autocorrelation of the additive noise

review of discrete-time random processes
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• Gaussian processes
– we extend here the definition (in slide 24) of two jointly Gaussian random 

variables to a collection of n jointly Gaussian random variables

given a vector of n real-valued random variables

whose mean values are

the xi random variables are jointly Gaussian if the joint probability density 
function of the n random variables is

where Cx represents the covariance matrix (which is symmetric positive definite) 
and its element cij represents the covariance between xi and xj :

|Cx| represents the determinant of the covariance matrix.

A discrete-time random process x[n] is Gaussian if every finite collection of 
samples of x[n] are jointly Gaussian

review of discrete-time random processes
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• Gaussian processes
– it should be noted that if the random variables are uncorrelated, then

and the Gaussian joint probability density function simplifies to

or

as one would expect, which also means the random variables are statistically 
independent.

Many of the processes that are found in applications are Gaussian, or 
approximately Gaussian as a result of the Central Limit theorem.

review of discrete-time random processes
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• stationary processes
– if the first-order density function of a random process x[n] is independent 

of time, i.e. for all k

the process is said to be first-order stationary, as a result, the first order 
statistics are independent of time:

a process is second-order stationary if the second-order joint density function 
depends only on the time difference n2-n1 and not on the individual times 
n1 and n2,, i.e.

second-order stationary processes have second-order statistics that are 
invariant to a time shift of the process, e.g.

review of discrete-time random processes

Note: a second-order 
stationary process is also 
first-order stationary



12

S
ta

ti
st

ic
al

 S
ig

na
l 

P
ro

ce
ss

in
g,

 w
ee

k
 2

F
E

U
P

-D
E

E
C

, 
S

ep
te

m
be

r 
27

, 2
0
22

© AJF

this means that the correlation between the random variables depends only 
on the time difference (i.e. the lag) separating them:

– in general, a process is said to be stationary of order L if the processes 
x[n] and x[n+k] have the same Lth-order joint density function

– a process that is stationary for all orders L>0 is said to be stationary in the 
strict sense

– a weaker definition of stationarity involves only the mean and 
autocorrelation (i.e. it presumes stationarity only up to order two) of a process 
and is called wide-sense stationarity

• wide sense stationary processes
– A random process x[n] is said to be wide-sense stationary (WSS) if:

• the mean of the process is constant and finite:

• the autocorrelation rx[k,] depends only on the difference k-

• the variance of the process is constant and finite, i.e. |cx[]|≤cx[0]=x
2<

review of discrete-time random processes

Note: in the case of a Gaussian process, wide-sense stationarity is equivalent to strict sense stationary 
since a Gaussian random process is completely defined in terms of the mean and covariance
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– two processes x[n] and y[n] are jointly wide-sense stationary if they are 
wide-sense stationary and if the cross-correlation rxy[k,] depends only on 
the time difference k-

– properties of the autocorrelation of a wide-sense stationary process:

• Symmetry: the autocorrelation sequence of a WSS process is a conjugate 
symmetric function of k (or a even sequence if the process is real), i.e.

• Mean square value: the autocorrelation sequence of a WSS process at lag k=0
is equal to the mean-square value of the process, i.e.

• Maximum value: the magnitude of the autocorrelation sequence of a WSS 
process at lag k is upper bounded by its value at lag k=0, i.e.

• Periodicity: the autocorrelation sequence of a WSS process is periodic with 
period k0 if

• in this case x[n] is said to be mean-square-periodic:

review of discrete-time random processes
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– a brief summary extending from the previous slides

considering WSS random processes:

it can be shown that:

if the processes are uncorrelated:

if the processes are orthogonal:

review of discrete-time random processes

Note: any strict-sense stationary 
signal is wide-sense stationary, the 
inverse is not always true, except 
if the signal is Gaussian
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• autocorrelation and autocovariance matrices
– are important second-order statistical characterizations of discrete-time 

random processes and are often represented in a matrix form

the outer product of                                       is a (p+1)(p+1) matrix:

if x[n] is WSS, taking the expected value and considering the conjugate 
symmetry of rx

*[]=rx[-], the autocorrelation matrix is obtained:

review of discrete-time random processes

Note: since rx
*[]=rx[-]

then Rx is Hermitian, in 
addition it is also Toeplitz 
(i.e. the elements along each 
diagonal, parallel to the 
main diagonal, are equal)
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• autocorrelation and autocovariance matrices

similarly, if                                     is the (length (p+1)) column vector of the 
mean of a WSS random process, forming the outer product of                                       
leads to  a (p+1)(p+1) covariance matrix:

or:

in most practical situations, processes are assumed to be zero-mean and 
thus

the structure of the Rx matrix reveals it is Hermitian Toeplitz

– properties of the autocorrelation matrix Rx of a WSS random process

1. Rx is Hermitian (i.e. Rx=Rx
H) and Toeplitz, 

2. Rx is nonnegative definite, i.e. Rx  0

3. the eigenvalues k of Rx are real-valued and nonnegative

Note: in the case of real-
valued random processes, 
the autocorrelation matrix is 
symmetric Toeplitz

review of discrete-time random processes
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– property 2 results from the fact that a Hermitian matrix is nonnegative if for 
any nonzero column vector a it can be verified that

– in fact, since 

then

– property 3 results from the fact that Rx is Hermitian

Eigenvalues and eigenvectors of Rx

given an Hermitian matrix Rx (i.e. Rx=Rx
H), it is important to find the (N1) 

vector q whose direction is not modified by the linear transformation:

where  is a constant; vector q can be found using 

where I is the (NN) identity matrix and 0 is a (N1) vector of zeros;

since q is arbitrary, the only way this equation is satisfied is if

review of discrete-time random processes
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This equation is an N-th order polynomial in , known as the characteristic 
equation of Rx. The N roots are called the eigenvalues and, in general, are 
distinct

for each eigenvalue i there is an (N1) eigenvector satisfying

Further properties of the autocorrelation matrix Rx :

• the eigenvalues are real and nonnegative: as shown in slide 30, since R is 
positive semidefinite, the quadratic form is positive:

• if the eigenvalues 0, 1, …, N-1 are distinct, then the corresponding 
eigenvectors are linearly independent, i.e. given N scalars 0, 1, …, N-1

only if all k are zero.

review of discrete-time random processes

Note: the eigenvalues and 
eigenvectors of a matrix R 
are conveniently computed 
in Matlab using 
[Lambda, Q]=eig(R)

Note: linear independence 
does not imply orthogonality 
but is a requirement so that the 
matrix consisting of all 
eigenvectors is invertible
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Further properties of the autocorrelation matrix Rx :

• if the eigenvalues 0, 1, …, N-1 are distinct, then the corresponding 
eigenvectors are orthogonal to one another, i.e. 

• if q0, q1, …, qN-1 is an orthonormal set of eigenvectors corresponding to 0, 1, 
…, N-1 distinct eigenvalues, of an NN correlation matrix R, then R can be 
diagonalized as

this results from                         and since q0, q1, …, qN-1 is an orthonormal

set of eigenvectors, then Q is unitary, that is

The correlation matrix R can also be written as

which is known as the spectral theorem

review of discrete-time random processes

Note: Q is an eigenmatrix

Note: proof appears e.g. in 
Manolakis, page 122
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Further properties of the autocorrelation matrix Rx :

• it also follows from linear algebra that if R is positive definite (and thus invertible), 
then, since  is diagonal, the inverse of R can be obtained as

• the trace of R :

• the determinant of R :

• Eigenvalue spread and dynamic range: the ill conditioning of a matrix Rx

increases with its condition number given by the ratio max/min, the larger the 
spread in eigenvalues, the wider (or less flat) the variation of the PSD function, 
according to the results in slide 31, the condition number is obtained as

review of discrete-time random processes
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– Example (autocorrelation matrix)

• It has been shown that the autocorrelation function of a random-phase sinusoid 
is given by 

• the corresponding 22 correlation matrix is easily obtained as

• and the eigenvalues result from

which leads to

review of discrete-time random processes

Note: if 00, then Rx

is positive definite



22

S
ta

ti
st

ic
al

 S
ig

na
l 

P
ro

ce
ss

in
g,

 w
ee

k
 2

F
E

U
P

-D
E

E
C

, 
S

ep
te

m
be

r 
27

, 2
0
22

© AJF

• linear transformation of random vectors
– many signal processing applications involve linear operations on random vectors; 

linear transformations are simple mappings given by the matrix operation

where x and y are the input and output random vector, respectively, and A is the 
transformation matrix (which we assume is rectangular and nonsingular)

thus:

and

similarly:

concerning the cross-correlation and cross-variance: 

review of discrete-time random processes
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• innovations representation of random vectors
– in many practical and theoretical signal processing applications, it is desirable to 

represent a random vector with a linearly equivalent vector consisting of 
uncorrelated components

w is an uncorrelated random vector and expresses an innovations representation, i.e. 
the random vector w contains the same “information” of x but because (contrarily to 

vector x) it is uncorrelated, each component wi of can be thought of as adding “new 
information” to w that is not present in the remaining components

since Cw must be a diagonal matrix, and since Cw = ACxA
H, matrix A must be such 

that it diagonalizes matrix Cx through the transformation A. This may be achieved 
using two approaches:

• eigenanalysis which leads to the (well-known) Karhunen-Loève transform (KLT)

• triangularization methods which lead to LDU decomposition and UDL decomposition

in order to simplify the analysis, we assume that if x is a random vector with mean 
vector x and covariance matrix Cx, then we will just deal with the zero-mean 
random vector x0=x-x, the resulting covariance matrix is preserved (and Rx=Cx)  

review of discrete-time random processes
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• eigenanalysis and the Karhunen-Loève transform (KLT)
– since                  and presuming a zero-mean random vector x, according to the 

results in slide 19 and slide 22

let’s assume that the diagonalization of Cx is achieved by making A=Qx
H, i.e. the linear 

transformation matrix A is the eigenmatrix Qx
H:

thus 

which means that the covariance matrix Cw is diagonal, hence several properties result

• the random vector w has zero mean and its components are mutually uncorrelated (and 

therefore orthogonal), also if x is N(0, Cx),then w is N(0, x) with independent components

• the variances of random variables wi are equal to the eigenvalues of Cx

• since the transformation matrix A=Qx
H is orthonormal, the transformation is called an 

orthonormal transformation and the distance measure known as Mahalanobis distance:

is preserved under the transformation

review of discrete-time random processes

Note: in the case of normal random vectors, the Mahalanobis 
distance is related to the log-likelihood function
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• eigenanalysis and the Karhunen-Loève transform (KLT)

• since in general w=Qx
H(x-x) we have

which is the projection of the vector x-x onto the unit vector qi, this means w represents x in a 
new coordinate system that is shifted to x and that is spanned by the set of orthogonal 
vectors qi,

geometric interpretation of the transformation for a two-dimensional case, where the contour 
d2(x) is displayed

review of discrete-time random processes

x1

x2

x1

x2

Note: an isotropic transformation 
may be obtained that not only makes 
Rw diagonal but also makes it an 
identity matrix, this is achieved by an 
additional mapping using the inverse 
of the square root of the eigenvalue 
matrix of x, see Manolakis, page 126, 
a consequence however is that the 
transformation  is orthogonal but not 
orthonormal, which means the 
distance measure is not preserved
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• eigenanalysis and the Karhunen-Loève transform (KLT)

KLT: in many signal processing applications, it is convenient to represent the samples 
of a random signal in another set of number (or coefficients) so that

• as a result of a signal transformation, the energy of the signal is concentrated only in a few 
coefficients (typical situation in coding/compression)

• the samples are uncorrelated, which is useful e.g. in optimal filtering in order to reduce 
complexity and improve the signal to noise ratio

main idea 1: to expand a signal as a linear combination of orthogonal basis functions
so that components of the signal with respect to basis functions do not interfere 
with one another

• examples of basis functions: the DFT, the DCT, the DST, the Haar transform

main idea 2: a set of orthogonal basis functions for which the signal components are 
statistically uncorrelated to one another, is based on the second-order properties of 
the random process and, in particular, on the diagonalization of the covariance 
matrix; it is also an optimal representation of the signal in the sense that it provides 
a representation with the smallest mean square error among all other orthogonal 
transforms

review of discrete-time random processes
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• eigenanalysis and the Karhunen-Loève transform (KLT)

– it is shown in Manolakis, section 3.5.3 (pages 130-131) that when a zero-mean 
random vector x with autocorrelation matrix Rx is transformed using an MM unitary 
matrix A (i.e. A-1=AH):

and when only the first m coefficients (m<M) are used to synthesize vector x, an error 
is obtained

whose mean square error:

is minimized (subject to ak
Hak=1) when A is chosen as the eigenmatrix Qx, i.e. when

– this orthogonal transformation is the Discrete Karhunen-Loève transform (DKLT) 
and produces a zero-mean uncorrelated random vector with autocorrelation 

review of discrete-time random processes

Note: the optimal solution is 
found using Lagrange multipliers 
and is obtained as Rxak=kak
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• eigenanalysis and the Karhunen-Loève transform (KLT)

– it should be noted that when A=Qx, then

i.e. the MSE in the reduced-basis representation, when only the first m basis vectors 
are used, is the sum of the remaining eigenvalues (which are never negative). 
Therefore, to obtain a minimum MSE (i.e. an optimum) representation, the procedure 
is to choose m eigenvectors corresponding to the m largest eigenvalues

– popular application: data compression in communications

• speech and image (both the transmitter and the receiver must have information about the eigenvectors)

review of discrete-time random processes

DKLT
x[n] w[n]

reduced-basis

selection

scheme

inverse

DKLT

wr[n] xr[n]

uncoded

signal

coded

signal

reconstructed

signal
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the KLT of periodic random sequences (with circulant correlation matrix)

– taking as a reference the definition in slide 15 of the autocorrelation matrix of a 
random process, if the autocorrelation is periodic with period M, i.e. if in addition to 
rx

*[]=rx[-], it is also true that rx[]=rx[M+], then rx[]=rx
*[-]=rx

*[M-], and hence the 
autocorrelation matrix

becomes a circular matrix since any row (column) is obtained as circular rotation of the 
first row (column)

review of discrete-time random processes

Note: a circulant 
matrix is Toeplitz but a 
Toeplitz matrix is not 
necessarily circulant 
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the KLT of periodic random sequences (with circulant correlation matrix)

– taking the M-point DFT random sequence rx
*[]:

and if we define

then, recognizing that Wk
-1 = Wk

M-1 :

• the product of the first row of Rx by Wk leads to products                     and to

• the product of the second row Rx by Wk leads to products

of the type                                                                     and hence to

in general the product of the i-th row Rx by Wk leads to 

which means:

that is, the normalized DFT vectors Wk are the eigenvectors of the circulant matrix Rx, 
and the corresponding eigenvalues are the DFT coefficients Rx[k], therefore, the 
DFT provides the KLT of periodic random sequences

review of discrete-time random processes
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the KLT of periodic random sequences (with circulant correlation matrix)

– If we define the MM matrix

it can be shown that it is unitary:

and the results of the previous slides may be expressed as

which shows that the DFT performs the diagonalization of circulant matrices

• in many cases, we can use the DFT to approximate the KLT of stationary random 
sequences, particularly when the correlation is negligible for |  | > M

review of discrete-time random processes
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• transformation using triangular decomposition
– triangular decomposition leads to transformations that result in causal or anticausal

linear filtering of associated sequences, we will consider

• lower-diagonal-upper (LDU) leading to causal filtering

• upper-diagonal-lower (UDL) leading to anticausal filtering

LDU decomposition

– any Hermitian, positive definite matrix R can be factored as

where L is a unit (meaning det(L)=1) lower triangular matrix, DL is a diagonal matrix with 
positive elements, and LH is a unit upper triangular matrix

If a linear transformation is defined as                            then

which means the components of w are orthogonal and the elements of DL

(along the diagonal) are their second moments; also, as wi is a linear combination of 
samples of x (up to index i), it can be interpreted as a result of causal linear filtering 
(Manolakis, page 128): 

Note: the provided 
Matlab function 
[L,D]=ldlt(R)

computes the LDU 
decomposition  

Note: det(R)=det(DL)  



33

S
ta

ti
st

ic
al

 S
ig

na
l 

P
ro

ce
ss

in
g,

 w
ee

k
 2

F
E

U
P

-D
E

E
C

, 
S

ep
te

m
be

r 
27

, 2
0
22

© AJF

review of discrete-time random processes

• transformation using triangular decomposition

UDL decomposition

– similar to LDU, involves factorization of a Hermitian, positive definite matrix R as

where U is a unit upper triangular matrix, DU is a diagonal matrix with positive 
elements, and UH is a unit lower triangular matrix

If a linear transformation is defined as                            then

which means the components of w are orthogonal and the elements of DU

(along the diagonal) are their second moments; also, as wi is a linear combination of 
samples of x (from index i up to M-1), it can be interpreted as a result of anticausal
linear filtering (Manolakis, page 128): 

as, if in the LDU decomposition

Note: det(R)=det(DU)  

Note: LUH and DUDL

Note: if U is upper 
triangular, U-1 is also 
upper triangular
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• comparison of eigenanalysis and (lower) triangular 
decompositions for zero-mean random vectors 

eigenanalysis                                    (lower) triangular decomposition 
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• generation of real-valued random vectors with given 
second order moments (Manolakis, pages 128-129)

– problem: to generate M samples of a zero-mean real-valued random vector x with a 
given symmetric positive definite autocorrelation matrix Rx

the innovations representation of the previous slides suggest three approches, the 
common idea is to factor Rx using either the eigenanalysis (orthonormal 

transformation) or the triangularization transformation, to obtain the diagonal matrix 
(x or DL or DU), generate M samples of an IID sequence (vector w) with the 
obtained diagonal variances (a normal pseudo number generator is presumed in order to 

ensure preservation the original distribution of the IID samples), and then transform the 
samples by using the inverse transformation matrix (Qx or Lx or Ux)

1. Eigendecomposition approach: first factor Rx as Rx=QxxQx
H, then generate w using N(0, 

x), finally compute x using x=Qxw,

2. LDU triangularization approach: first factor Rx as Rx=LxDLLx
H, then generate w using N(0, 

DL), finally compute x using x=Lxw,

3. UDL triangularization approach: first factor Rx as Rx=UxDUUx
H, then generate w using N(0, 

DU), finally compute x using x=Uxw.
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• ergodicity
– all the statistical averages considered so far are ensemble averages (i.e. evaluated 

for a particular time instant n0) but these are usually not available or accessible

– usually, only a single (sample) realization of the random process is available

– if the statistical averages obtained from a single realization of the random process 
(i.e. time averages) are representative (and thus, valid estimates) of ensemble averages, 
then the random process is called ergodic

n

n

n

n0

ensemble 
average 

sample 
average 

x1[n]

x2[n]

xi[n]

sample 
average 

sample (time) 
average 

review of discrete-time random processes
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• ergodicity in the mean
– if the sample mean of a WSS random process converges to mx in the 

mean square sense, then the process is ergodic in the mean

sample mean:

ergodic in the mean if 

convergence in the mean square sense requires that

1. the sample mean be asymptotically unbiased (which is true for any WSS process):

2. the variance of the estimate goes to zero (i.e. vanishes) as N

Note: only stationary signals can be 
ergodic, WSS does not imply ergodicity

review of discrete-time random processes



38

S
ta

ti
st

ic
al

 S
ig

na
l 

P
ro

ce
ss

in
g,

 w
ee

k
 2

F
E

U
P

-D
E

E
C

, 
S

ep
te

m
be

r 
27

, 2
0
22

© AJF

where cx[k] denotes the autocovariance of x[n]

thus, x[n] is ergodic in the mean if and only if

a (simpler) necessary and sufficient condition is:

other sufficient conditions are: cx[0]< and                       i.e. a WSS process 
is ergodic in the mean if it is asymptotically uncorrelated

Example:

the random phase sinusoid:

its autocovariance function is                                  and, if 00,

review of discrete-time random processes
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• ergodicity in the autocorrelation
estimating the autocorrelation sequence                                     using a single 

realization of the process x[n] may be achieved using

if               converges in the mean-square sense to rx[] as N, the 
process is autocorrelation ergodic and:

since                is the sample mean of yk[n], x[n] is autocorrelation ergodic if 
yk[n] is ergodic in the mean

particular case for a Gaussian process: a necessary and sufficient condition 
for a WSS process with covariance cx[] to be autocorrelation ergodic, in 
the mean square sense, is

Note: if x[n] is ergodic in both the mean and autocorrelation, 
it is also WSS, however, WSS does not imply ergodicity

review of discrete-time random processes
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• white noise
– a wide-sense stationary process v[n] is white if the autocovariance 

function is zero for all k0, i.e. it consists of a sequence of uncorrelated 
random variables (each having a variance v

2) :

• white Gaussian noise (WGN) consists of a sequence of uncorrelated real-
valued Gaussian random variables

• if the noise is complex

then

• the power spectrum
– the Fourier transform of a random process can not be computed because 

the process is an ensemble of discrete signals, however, it is possible to 
obtain a frequency-domain representation of the process by taking the 
Fourier transform of ensemble averages

review of discrete-time random processes
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• the power spectrum
– the power spectral density (or power spectrum) of a random process is the 

Fourier transform of the (deterministic sequence) rx[]

• if x[n] is not zero-mean, then the power spectrum has a spike at =0, for 
nonzero-mean random processes the power spectrum is defined to be the 
discrete-time Fourier transform of the autocovariance

– the Fourier pair is completed with the inverse Fourier transform of Px(e
j)

• the power spectrum provides a frequency-domain description of the second-
order moment of the process

– as a more general alternative, the power spectrum of x[n] can also be 
obtained as the Z-transform of rx[]

–

review of discrete-time random processes
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• properties of the power spectrum
– Positivity: the power spectrum of a WSS process is positive

– Total power: the power in a zero mean WSS random process is 
proportional to the area under the power spectral density curve

– Symmetry: since the autocorrelation of a WSS random process is 
conjugate symmetric, the power spectrum is a real function of 

In addition, is x[n] is real, then Px(e
j) is even and therefore

Note: the power spectrum can 
be seen as a density function 
that describes how the power 
of x[n] is distributed in 

review of discrete-time random processes
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• properties of the power spectrum
– Eigenvalue extremal property: the eigenvalues of the nn autocorrelation 

matrix of a zero mean WSS random process are upper and lower 
bounded by the maximum and minimum values, respectively of the power 
spectrum

in fact, if i and qi are the eigenvalues and eigenvectors of the 
autocorrelation matrix Rx, we have:



and thus

also, since                                                 and

review of discrete-time random processes
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we have

and if

then

also, by the Parseval theorem

we obtain

and since                                                       then

review of discrete-time random processes
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it can also be shown [Monson, page 98] that, in addition to providing a 
frequency-domain representation of the second-order moment, the power 
spectrum may also be related to the ensemble average of the squared 
(discrete-time) Fourier magnitude |X(ej)|2, in fact, it may be viewed as the 
expected value of PN(ej) in the limit as N

review of discrete-time random processes

Summary note concerning stationarity and ergodicity: in practice, stationarity means that the most 
important statistical properties do not change over the time when we observe the signal; whereas 
stationarity ensures the time invariance of the statistics of a random signal, ergodicity implies that any 
statistics can be calculated either by averaging over all members of the ensemble at a fixed time, or 
by time averaging over any single representative member of the ensemble

Summary note concerning white noise: the term white noise is 
used to emphasize that all frequencies contribute the same 
amount of power, as in the case of white light, which is 
obtained by mixing all possible colors by the same amount  

Summary note concerning uncorrelatedness and PDF: the conditions of uncorrelatedness or 
independence do not put any restriction on the form of the probability density function (PDF), thus an 
IID discrete-time random process can have any type of probability distribution; what about 
deterministic signals ?   
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• sum of independent random variables
– a random variable y may be expressed as a combination of M statistically 

independent random variables xk (ck are constants):

it can be shown [Manolakis, page 90] that if the individual means are mxk, the 
individual variances are xk

2, and the individual PDFs are fxk(), then

the Central Limit Theorem states that the sum of an infinite number of 
statistically independent random variables (with finite mean and variance) 
leads to a combined distribution that converges to the Gaussian distribution


