Outline	Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
	000000	0000000	0000	0000000	0000000

Nearest Neighbors

João Gama jgama@fep.up.pt

LIAAD-INESC Porto, University of Porto, Portugal Setembro 2020

Outline	Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
	000000	0000000	0000	0000000	0000000

- 2 The 1-nearest Neighbour algorithm
- 3 The k-nearest Neighbour algorithm

Outline	Introduction •00000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
Out	line				

- 2 The 1-nearest Neighbour algorithm
- 3 The k-nearest Neighbour algorithm

4 Analysis

Outline	Introduction 00000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm 0000	Analysis 0000000	
6					

Context

Predictive Learning:

- Given
 - examples of a function (X, f(X))
 f(.) is unknown
 - Predict de value f(X) for X, not seen before
- Two different possibilities:
 - Classification: $f(X) \in \{c_1, \ldots, c_n\}$ the domain of f(x) is an undordered discrete set;
 - Regression: f(X) ∈ R
 the domain of f(x) is a subset of ℜ.

Тепро	Temperatu	Hunidade	vanio	Jup
51	85	85	Não	Não
84	80	90	Sim	Não
Nibiato	83	86	Nio	Sm
Chusa	70	96	Nio	Sm
Chava	68	80	Nio	Sm
Chuva	65	70	Sim	Nio
Nitiato	61	65	Sim	Sim
51	72	95	Não	Não
84	Ð	70	Nio	Sim
Chusa	75	80	Nio	Sim
84	75	70	Sim	Sim
Nitiato	72	90	Sim	Sim
Nibiato	81	75	Nio	Sim
Chasa	71	91	Sm	Não

Peso	Distancia	Efeito
-1.48334449	1.4139718	0.8001842
0.06711704	-0.3090329	2.4637740
0.78459210	0.6591077	0.2712122
-0.55427611	1.4456181	1.1274092

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Outline	Introduction 00000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm 0000	~	Developments 0000000
Mot	ivation				

- The nearest-neighbour algorithm is one of the simplest data mining algorithms.
- Intuition:

Objects of the same concept are similar to each other. Examples of the same class are close to each other.

Outline	Introduction 000€00	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
Mot	ivation				

- The algorithm:
 - Each example represents a point in the space defined by the attributes;
 - classifies objects based on closeness to the examples in the training set;
- Characteristics
 - lazy algorithm. Does not learn a compact model for the training data;
 - only memorize training examples;
 - It can be used both for classification or regression.

Outline Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
000000	0000000	0000	0000000	0000000

The Iris dataset

```
> data(iris)
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1
>
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
5.8	2.7	5.1	1.9	virginica
7.1	3.0	5.9	2.1	virginica
6.3	2.9	5.6	1.8	virginica

Outline	Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
	000000	0000000	0000	0000000	0000000

The instance Space

3

Outline	Introduction 000000	The 1-nearest Neighbour algorithm •0000000	The k-nearest Neighbour algorithm	~	Developments 0000000
Out	line				

2 The 1-nearest Neighbour algorithm

3 The k-nearest Neighbour algorithm

4 Analysis

Outline	Introduction 000000	The 1-nearest Neighbour algorithm 0000000	The k-nearest Neighbour algorithm	~	Developments 0000000
Base	e Idea				

- Each example represents a point in space defined by the attributes.
- Define a metric in this space:
 - The most common metric: Euclidean distance $d(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^{n} (a_i b_i)^2}$
- Given a test example, select the closest training example. Classify the test example in the class of the closest training example.

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
Met	rics				

- The most common metric: Euclidean distance $d(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^{n} (a_i b_i)^2}$
- Proprieties:
 - identity: D(Q, Q) = 0;
 - 2 is always non negative: $D(Q, S) \ge 0$;
 - (a) is symmetric: D(Q, S) = D(S, Q);
 - satisfies the triangular inequality: $D(Q,S) + D(S,T) \ge D(Q,T).$
- It is additive: assumes the independence of attributes.

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
Dist	ances				

• Numeric Attributes (p-norm)

$$L^p(\vec{x}, \vec{y}) = \sqrt[p]{\sum |x_i - y_i|^p}$$

Manhattan:

$$L(\vec{x},\vec{y}) = \sum |x_i - y_i|$$

• Nominal Attributes Hamming Distance

•
$$d(x_i, x_j) = 0$$
 sse $x_i = x_j$

•
$$d(x_i, x_j) = 1$$
 sse $x_i \neq x_j$

Outline	Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
	000000	00000000	0000	0000000	0000000

The 1-nearest Neighbour algorithm

- Learning Algorithm:
 - For each training example $\{\vec{x_i}, y_i\}$
 - Memorize the example
- Applying the algorithm:
 - Given a test point $\{x_q, ?\}$:
 - Compute the distance o the point (x_q) to each training example;
 - Let $\{x_T, y_T\}$ the close training example.
 - Classify x_q : $y_q \leftarrow y_T$

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
Illus	trative	Example			

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
The	Decisio	on Surface			

The Voronoi Diagram

- Voronoi cell x ∈ T: set of points whose distance to x is less than the distance to any other point
- The decision surface is a set of convex polyhedra containing each of the training examples

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0000000
Dist	ances				

What is the impact, in the distance function, of representing an attribute in cm or Km?

To avoid the impact in the distance function: normalize attributes:

・ロ・・雪・・ヨ・・

э

- Subtract the mean and divide by the standard deviation all attributes with mean 0 and standard deviation 1.
- Divide attribute values by the range.

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm •000	~	Developments 0000000
Out	line				

1 Introduction

- 2 The 1-nearest Neighbour algorithm
- 3 The k-nearest Neighbour algorithm

4 Analysis

5 Developments

Outline	Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
	000000	0000000	0000	0000000	0000000

The k-nearest Neighbour algorithm

Select, from the training set, the k nearest exemplars.

- In Classification problems:
 - Each neighbour votes for one class.
 - Select the most voted class.
 - which is equivalent to:
 - $f(x_T) \leftarrow moda(f(x_1), f(x_2), \ldots, f(x_k))$
 - The constant that minimizes the 0-1 loss function is the mode.
- In regression problems:
 - $f(x_T) \leftarrow mean(f(x_1), f(x_2), \ldots, f(x_k))$
 - The constant that minimizes the square error is the mean;
 - $f(x_T) \leftarrow median(f(x_1), f(x_2), \dots, f(x_k))$
 - The constant that minimizes the absolute error is the *median*.

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis 0000000	

Illustrative Example

 $k=3\;e\;k=\!5$

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~			
Which value for k ?							

- Usually small odd numbers (k=3, 5,...).
- Estimate k using cross-validation.
- Associate a weight to the vote of each neighbour
 - Weigh the contribution of each of the *k* neighbours inversely proportional to the distance.
 - In classification problems:

• Weighted mode: $y_t = argmax \sum_{i}^{k} w_i \delta(c, y_i)$ with $w_i = \frac{1}{d(x_t, x_i)}$

• In regression problems:

• Weighted mean:
$$y_t = \frac{\sum_{i=1}^k w_i y_i}{\sum w_i}$$
 with $w_i = \frac{1}{d(x_t, x_i)}$

• In this way, it is possible to use k = m (all the training examples).

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm 0000	Developments 0000000
Out	line			

1 Introduction

- 2 The 1-nearest Neighbour algorithm
- 3 The k-nearest Neighbour algorithm

Analysis

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm		Developments 0000000	
Analysis of the Algorithm						

The k-nearest neighbour is one of the paradigms of inductive learning: *objects with similar characteristics belong to the same group*.

Positive

- The learning phase consists of memorizing the examples;
- Applicable even in complex problems;
- Can be used both in classification and regression;
- Naturally Incremental ;
- behaviour in the limit: For an infinite number of examples, the error of 1NN is bounded by twice the Bayes Optimal error.

(日)

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm 0000	Developments 0000000
пι				

Behaviour in the limit

Given

- e(x): error of the optimal classifier
- $e_{1nn}(x)$: error of the 1-nearest neighbour

We can prove:

- Theorem: $\lim_{n\to\infty} e_{1nn}(x) \le 2 * e(x)$
- Theorem: $lim_{n->\infty,k->n}e_{kNN}(x) = e(x)$

For an infinite number of examples, the error of the k-NN is bounded by the Bayes Optimal error.

イロト イロト イヨト イヨト 三日

Outline	Introduction	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Analysis	Developments
	000000	0000000	0000	0000000	0000000

Bayes Optimal error

Outline Introduction The 1-nearest Neighbour algorithm

The k-nearest Neighbour algorithm 0000

Analysis Development

◆日 > < 同 > < 国 > < 国 >

Analysis of the Algorithm

Negative

- Do not get a compact representation of examples: *lazy* algorithm;
- high application time: calculates the distance between the test example and all training examples.
- is affected by the presence of redundant and irrelevant attributes;
- The course of dimensionality.

Outline	Introduction 000000	The 1-nearest Neighbour algo 00000000	orithm	The k-nearest Neighbour algorithm	Analysis 00000●0	
T 1		c 1	12.			

The course of dimensionality

Consider 100 points uniformly distributed:

- In a square with a side of 1 unit;
- In a cube with side 1 unit;

• ...

(The number of attributes defines the number of dimensions of space)

We compute the average distance between any two points:

Nr. Dimensions	Average Distance
2	0.494
3	0.647
4	0.7717
5	0.875
10	1.28

Increasing the size to keep the average distance between the points is necessary to increase exponentially the number of points.

Outline	Introduction	The k-nearest Neighbour algorithm	Analysis	
	000000	 	000000	0000000

The course of dimensionality

Removing irrelevant attributes

- Forward selection
- Backward elimination
- Associate weights to the attributes

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Developments •000000
Out	line			

1 Introduction

- 2 The 1-nearest Neighbour algorithm
- 3 The k-nearest Neighbour algorithm

4 Analysis

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 0●00000
Dev	elopme	nts			

Long application time: calculates the distance between the test example and all training examples.

Reducing the search space:

- Obtain representative examples
 - Remove redundant examples
 - Remove examples where all the neighbours are of the same class
- Remove noisy examples
 - Remove examples where all the neighbours are of other class.

・ロト ・ 一下・ ・ ヨト ・ ヨト

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 00●0000
- P.		N 1			

Edited k-NN

• Function Edited k-NN(Exs)

- For each example $x \in Exs$
 - If x is correctly classified by Exs {x} Then remove x from Exs
- Function Edited k-NN(Exs)
 - E = {}
 - For each example $x \in Exs$
 - If x is misclassified by E Then Add x to E

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	~	Developments 000●000
k-Di	mensio	nal Trees			

kd-trees is a space-partitioning data structure for organizing points in a k-dimensional space.

ヘロト 人間ト 人間ト 人間ト

In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

C. Atkeson, A. Schaal, A. Moore; *Locally weighted learning*, Al Review, 1997 Radial basis Function Networks

(日)

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	Developments 00000€0
Case	e Base	Reasoning		

Case-based reasoning (CBR), is the process of solving new problems based on the solutions of similar past problems.

- An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning.
- A lawyer who advocates a particular outcome in a trial based on legal precedents or a judge who creates case law is using case-based reasoning.

A. Aamodt, E. Plazas, *Case-Based Reasoning: Foundational issues, methodological variations, and system approaches,* Al Communications Vol. 7(1), 1994

Outline	Introduction 000000	The 1-nearest Neighbour algorithm	The k-nearest Neighbour algorithm	
Bibl	iograph	у		

- D.Aha, D.Kibler, M.Albert, *Instance-based learning algorithms*, Machine Learning, Vol.6, 1991
- C. Atkeson, A. Schaal, A. Moore; *Locally weighted learning*, AI Review, 1997 Radial basis Function Networks
- M. Powell, *Radial basis functions for multivariate interpolation: a review*, in Algorithms for approximation, Clarendon Press, 1987
- A. Aamodt, E. Plazas, *Case-Based Reasoning: Foundational issues, methodological variations, and system approaches*, AI Communications Vol. 7(1), 1994