

Nearest Neighbors

João Gama jgama@fep.up.pt

LIAAD-INESC Porto, University of Porto, Portugal Setembro 2020

- [The 1-nearest Neighbour algorithm](#page-8-0)
- [The k-nearest Neighbour algorithm](#page-16-0)

- 2 [The 1-nearest Neighbour algorithm](#page-8-0)
- **3** [The k-nearest Neighbour algorithm](#page-16-0)

[Analysis](#page-20-0)

Predictive Learning:

- **Given**
	- examples of a function $(X, f(X))$ $f(.)$ is unknown
	- Predict de value $f(X)$ for X, not seen before
- **•** Two different possibilities:
	- **•** Classification: $f(X) \in \{c_1, \ldots, c_n\}$ the domain of $f(x)$ is an undordered discrete set;
	- Regression: $f(X) \in R$ the domain of $f(x)$ is a subset of \Re .

- The nearest-neighbour algorithm is one of the simplest data mining algorithms.
- **o** Intuition:

Objects of the same concept are similar to each other. Examples of the same class are close to each other.

- The algorithm:
	- Each example represents a point in the space defined by the attributes;
	- classifies objects based on closeness to the examples in the training set;
- **•** Characteristics
	- lazy algorithm. Does not learn a compact model for the training data;
	- only memorize training examples;
	- It can be used both for classification or regression.

The Iris dataset

```
> data (iris)> str(iris)'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal. Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal. Length; num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal. Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1
> I
```


The instance Space

2 [The 1-nearest Neighbour algorithm](#page-8-0)

3 [The k-nearest Neighbour algorithm](#page-16-0)

[Analysis](#page-20-0)

- Each example represents a point in space defined by the attributes.
- Define a metric in this space:
	- The most common metric: Euclidean distance $d(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^{n}(a_i - b_i)^2}$
- Given a test example, select the closest training example. Classify the test example in the class of the closest training example.

- **•** The most common metric: Euclidean distance $d(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^{n}(a_i - b_i)^2}$
- Proprieties:
	- **1** identity: $D(Q, Q) = 0$;
	- 2 is always non negative: $D(Q, S) \geq 0$;
	- **3** is symmetric: $D(Q, S) = D(S, Q)$;
	- ⁴ satisfies the triangular inequality: $D(Q, S) + D(S, T) \geq D(Q, T).$
- It is additive: assumes the independence of attributes.

• Numeric Attributes (p-norm)

$$
L^p(\vec{x}, \vec{y}) = \sqrt[p]{\sum |x_i - y_i|^p}
$$

Manhattan:

$$
L(\vec{x},\vec{y}) = \sum |x_i - y_i|
$$

• Nominal Attributes Hamming Distance

\n- $$
d(x_i, x_j) = 0
$$
 sse $x_i = x_j$
\n- $d(x_i, x_j) = 1$ sse $x_i \neq x_j$
\n

The 1-nearest Neighbour algorithm

- Learning Algorithm:
	- For each training example $\{\vec{x}_i, y_i\}$
	- Memorize the example
- Applying the algorithm:
	- Given a test point $\{x_a, ?\}$:
	- Compute the distance o the point (x_q) to each training example;

- Let $\{x_T, y_T\}$ the close training example.
- Classify $x_q: y_q \leftarrow y_T$

The Voronoi Diagram

- Voronoi cell $x \in T$: set of points whose distance to x is less than the distance to any other point
- The decision surface is a set of convex polyhedra containing each of the training examples

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \equiv

What is the impact, in the distance function, of representing an attribute in cm or Km?

To avoid the impact in the distance function: normalize attributes:

- Subtract the mean and divide by the standard deviation all attributes with mean 0 and standard deviation 1.
- Divide attribute values by the range.

[Introduction](#page-2-0)

- 2 [The 1-nearest Neighbour algorithm](#page-8-0)
- 3 [The k-nearest Neighbour algorithm](#page-16-0)

[Analysis](#page-20-0)

[Developments](#page-27-0)

The k-nearest Neighbour algorithm

Select, from the training set, the k nearest exemplars.

- In Classification problems:
	- Each neighbour votes for one class.
	- Select the most voted class.
	- which is equivalent to:
		- $f(x_T) \leftarrow \text{modal}(f(x_1), f(x_2), \dots, f(x_k))$
	- The constant that minimizes the 0-1 loss function is the mode.
- In regression problems:
	- $f(x_T) \leftarrow \text{mean}(f(x_1), f(x_2), \dots, f(x_k))$
	- The constant that minimizes the square error is the mean;
	- $f(x_T) \leftarrow \text{median}(f(x_1), f(x_2), \dots, f(x_k))$
	- The constant that minimizes the absolute error is the median.

Illustrative Example

 $k = 3 e k = 5$

 \equiv

イロト 不優 トイミト イミド

- Usually small odd numbers $(k=3, 5,...)$.
- Estimate k using cross-validation.
- Associate a weight to the vote of each neighbour
	- Weigh the contribution of each of the k neighbours inversely proportional to the distance.
	- In classification problems:

Weighted mode: $y_t = \text{argmax} \sum_{i}^{k} w_i \delta(c, y_i)$ with $w_i = \frac{1}{d(x_t, x_i)}$

• In regression problems:

• Weighted mean:
$$
y_t = \frac{\sum_{i=1}^{k} w_i y_i}{\sum w_i}
$$
 with $w_i = \frac{1}{d(x_t, x_i)}$

• In this way, it is possible to use $k = m$ (all the training examples).

1 [Introduction](#page-2-0)

- 2 [The 1-nearest Neighbour algorithm](#page-8-0)
- **3** [The k-nearest Neighbour algorithm](#page-16-0)

4 [Analysis](#page-20-0)

The k-nearest neighbour is one of the paradigms of inductive learning: objects with similar characteristics belong to the same

group.

Positive

- The learning phase consists of memorizing the examples;
- Applicable even in complex problems;
- Can be used both in classification and regression;
- Naturally Incremental ;
- **o** behaviour in the limit:

For an infinite number of examples, the error of 1NN is bounded by twice the Bayes Optimal error.

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A}$

Behaviour in the limit

Given

- $e(x)$: error of the optimal classifier
- $e_{1nn}(x)$: error of the 1-nearest neighbour

We can prove:

- Theorem: $\lim_{n \to \infty} e_{1nn}(x) \leq 2 * e(x)$
- Theorem: $\lim_{n\to\infty,k\to n}e_{kNN}(x) = e(x)$

For an infinite number of examples, the error of the k-NN is bounded by the Bayes Optimal error.

Bayes Optimal error

[The k-nearest Neighbour algorithm](#page-16-0) **[Analysis](#page-20-0)** [Developments](#page-27-0)
0000 0000000 0000

0000000

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Analysis of the Algorithm

Negative

- Do not get a compact representation of examples: lazy algorithm;
- high application time: calculates the distance between the test example and all training examples.
- is affected by the presence of redundant and irrelevant attributes;
- The course of dimensionality.

The course of dimensionality

Consider 100 points uniformly distributed:

- In a square with a side of 1 unit;
- In a cube with side 1 unit;

 \bullet ...

(The number of attributes defines the number of dimensions of space)

We compute the average distance between any two points:

Increasing the size to keep the average distance between the points a is necessary to increase exponentially the nu[mb](#page-24-0)[er](#page-26-0) [o](#page-24-0)[f](#page-25-0) [p](#page-26-0)[o](#page-19-0)[in](#page-20-0)[t](#page-26-0)[s](#page-27-0)[.](#page-19-0)

The course of dimensionality

Removing irrelevant attributes

- **•** Forward selection
- **•** Backward elimination
- Associate weights to the attributes

1 [Introduction](#page-2-0)

- 2 [The 1-nearest Neighbour algorithm](#page-8-0)
- **3** [The k-nearest Neighbour algorithm](#page-16-0)

[Analysis](#page-20-0)

Long application time: calculates the distance between the test example and all training examples.

Reducing the search space:

- Obtain representative examples
	- Remove redundant examples
	- Remove examples where all the neighbours are of the same class
- Remove noisy examples
	- Remove examples where all the neighbours are of other class.

 $(1 - \epsilon)$ and $(1 - \epsilon)$ and $(1 - \epsilon)$

• Function Edited k-NN(Exs)

- For each example $x \in Exs$
	- If x is correctly classified by $Exs \{x\}$ Then remove x from Fxs

• Function Edited k-NN(Exs)

$$
\bullet\ \mathsf{E}=\{\}
$$

- For each example $x \in Exs$
	- \bullet If x is misclassified by E Then Add x to E

kd-trees is a space-partitioning data structure for organizing points in a k-dimensional space.

メロトメ 御 トメ きょくきょ

In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

C. Atkeson, A. Schaal, A. Moore; Locally weighted learning, AI Review, 1997 Radial basis Function Networks

←ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶

Case-based reasoning (CBR), is the process of solving new problems based on the solutions of similar past problems.

- An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning.
- A lawyer who advocates a particular outcome in a trial based on legal precedents or a judge who creates case law is using case-based reasoning.

A. Aamodt, E. Plazas, Case-Based Reasoning: Foundational issues, methodological variations, and system approaches, AI Communications Vol. 7(1), 1994

- D.Aha, D.Kibler,M.Albert, Instance-based learning algorithms, Machine Learning, Vol.6, 1991
- C. Atkeson, A. Schaal, A. Moore; Locally weighted learning, AI Review, 1997 Radial basis Function Networks
- M. Powell, Radial basis functions for multivariate interpolation: a review, in Algorithms for approximation, Clarendon Press, 1987
- A. Aamodt, E. Plazas, Case-Based Reasoning: Foundational issues, methodological variations, and system approaches, AI Communications Vol. 7(1), 1994