Bayesian Learning: An Introduction

Jo˜ao Gama

LIAAD-INESC TEC, University of Porto, Portugal jgama@fep.up.pt September 2020

- [Bayesian Network Classifiers](#page-32-0)
- [k-Dependence Bayesian Classifiers](#page-58-0)

Outline

- **[Introduction](#page-21-0)**
- 3 [Bayesian Network Classifiers](#page-32-0)
- 4 [k-Dependence Bayesian Classifiers](#page-58-0)
- 5 [Links and References](#page-66-0)

A Case Study

- Suppose we are required to build a controller that removes bad oranges from a packaging line
- Decision are made based on a sensor that reports the overall color of the orange

റെ റ

[Outline](#page-2-0) [Motivation](#page-2-0) [Introduction](#page-21-0) [Bayesian Network Classifiers](#page-32-0) [k-Dependence Bayesian Classifiers](#page-58-0) Links and Dependence Bayesian Classifiers [Links and References](#page-66-0) and References and References and References and References and

Classifying Oranges I

Suppose we know all the aspects of the problem:

Prior Probabilities:

- Probability of good $(+1)$ and bad (-1) oranges
	- $P(C = +1)$ = probability of a good orange
	- $P(C = -1)$ = probability of a bad orange
		- Note: $P(C = +1) + P(C = -1) = 1$
- Assumption: oranges are independent The occurrence of a bad orange does not depend on previous

Classifying Oranges II

Sensor performance:

• Let X denote sensor measurement from each type of oranges

Bayes Rule

• Given this knowledge, we can compute the posterior probabilities

Bayes Rule:

$$
P(C|X=x) = \frac{P(C) \times P(X=x|C)}{P(X=x)}
$$

 $P(X = x) = P(C = +1) \times P(X = x | C = +1) + P(C = -1) \times P(X = x | C = -1)$

Posterior of Oranges

Data likelihood ...

Posterior of Oranges

Data likelihood ...Combined with prior

Posterior of Oranges

Data likelihood ...Combined with prior...and Normalized

Decision making

Intuition:

- Predict Good if $P(C = +1|X) > P(C = -1|X)$
- **•** Predict Bad, otherwise

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Credit applications:

Motivation: Supervised Learning Task

- Given:
	- Historical data about clients credit operations
		- **Characteristics of the clients**
		- Characteristics of the credit application
	- The success of the operation constitutes the class
- Goal: Learn a model that accurately predicts the success (or not) of new credit applications

 $(1 - \epsilon)$ and $(1 - \epsilon)$ and $(1 - \epsilon)$

B

Credit data: Clients are Data Points

Supervision: Add Class Values

Learning Problems:

• Find a function:

 $Lean = f(amount,age, salary, account)$

Given the characteristics of a client, predict if the application will succeed or not.

Qualitative model ...

A DAG: reflects the conditional independence between variables.

... and Quantitative model

A set of contingency tables between dependent variables.

Causal Model: inputs and outputs.

K ロ K K 個 K K 星 K K 星 K …星

Propagating Evidence ...

and propagating this evidence

Propagating Evidence ...

Diagnosis: Observing Outputs and propagating this evidence

Why Learn Bayesian Networks?

- **•** Join Probability Distribution of a set of Variables.
- Conditional independences & graphical language capture structure of many real-world distributions
- **•** Graph structure provides much insight into domain
- Learned model can be used for many tasks:
	- Prediction: Given the Inputs: which Outputs?
	- **Diagnosis**: Given the Outputs: which Inputs?
	- **Unsupervised**: Given Inputs and Outputs: Which structure?

 $(1 - \epsilon)$ and $(1 - \epsilon)$ and $(1 - \epsilon)$

 \equiv

Outline

[Bayesian Network Classifiers](#page-32-0)

[k-Dependence Bayesian Classifiers](#page-58-0)

[Links and References](#page-66-0)

Basics on Statistics

Axioms:

- All probabilities between 0 and 1 $0 < P(A) < 1$
- True proposition has probability 1, false has probability 0. $P(\text{true}) = 1$ and $P(\text{false}) = 0$
- The probability of a disjunction is: $P(A \vee B) = P(A) + P(B) - P(A \wedge B)$

Conditional Probability:

- $P(A|B)$ is the probability of A given B Assumes that B is all and only information known.
- Defined by: $P(A|B) = \frac{P(A \wedge B)}{P(B)}$

 \equiv

Bayes Theorem

$$
P(h|D) = \frac{P(h)P(D|h)}{P(D)}
$$

Combine the prior distribution and the likelihood of the observed data in order to derive the posterior distribution. Proof:

$$
P(h|D) = \frac{P(h \land D)}{P(D)}
$$

$$
P(D|h) = \frac{P(h \land D)}{P(h)}
$$

$$
P(h \land D) = P(D|h)P(h)
$$

$$
P(h|D) = \frac{P(h)P(D|h)}{P(D)}
$$

Bayes Theorem

What is the most probable hypothesis h, given training data D?

$$
P(h|D) = \frac{P(h)P(D|h)}{P(D)}
$$

Computing the probability of a hypothesis based on:

- \bullet its prior probability,
- the probability of observing the data given the hypothesis,
- **•** The data itself
- $P(h)$ = prior probability of hypothesis h
- \bullet $P(D)$ = prior probability of training data D
- $P(h|D)$ = probability of h given D
- $P(D|h)$ = probability of D given h

Illustrative Example

- The Win envelope has 1 dollar and four beads in it.
- The Lose envelope has three beads in it.

Someone draws an envelope at random and offers to sell it to you. Which one should we choose?

Illustrative Example

Before deciding, you are allowed to see one bead in one envelope.

- **If it is black, Which one** should we choose?
- And if it is red?

Illustrative Example

Prior Probabilities: $P(\textit{Win}) =$ $P(Lose) =$ $P(\text{red}) =$ $P(black) =$ $P(black|Win) =$ $P(\text{red}|W\text{in}) =$ After seeing the bead: $P(\textit{Win}|\textit{black}) =$ $P(\textit{Win}|\textit{red}) =$

Illustrative Example

Prior Probabilities: $P(\text{Win}) = 1/2$ $P(Lose) = 1/2$ $P(\text{red}) = 3/7$ $P(black) = 4/7$ $P(black|Win) = 1/2$ $P(\text{red}|W\text{in}) = 1/2$ After seeing the bead: If bead $=$ black: $P(\text{Win}|\text{black}) = \frac{P(\text{Win})P(\text{black}|\text{Win})}{P(\text{black})} = \frac{1/2*1/2}{4/7} = 0.4375$ If bead = red: $P(\textit{Win}|\textit{red}) = \frac{P(\textit{Win})P(\textit{red}|\textit{Win})}{P(\textit{red})} = \frac{1/2*1/2}{3/7} = 0.583$

 $(1 + 4)$

Bayes Theorem ...

Bayesians ...

イロト イ部 トイ君 トイ君 トー

Bayesians ...

- The Homo apriorius establishes the probability of an hypothesis, no matter what data tell. Astronomical example: $H0=25$. What the data tell is uninteresting.
- The Homo pragamiticus establishes that it is interested by the data only. Astronomical example: In my experiment I found H0=66.6666666, full stop.
- The Homo frequentistus measures the probability of the data given the hypothesis. Astronomical example: if $H0=66.666666$, then the probability to get an observed value more different from the one I observed is given by an opportune expression. Don't ask me if my observed value is near the true one, I can only tell you that if my observed values is the true one, then the probability of observing data more extreme than mine is given by an opportune expression.
- The Homo sapients measures the probability of the data and of the hypothesis. Astronomical example: [missing]
- **•** The Homo bayesianis measures the probability of the hypothesis, given the data. Astronomical example: the true value of H0 is near 72 with $+3$ uncertainty.

Stefano Andreon Homepage

Outline

[Bayesian Network Classifiers](#page-32-0)

[k-Dependence Bayesian Classifiers](#page-58-0)

[Links and References](#page-66-0)

An Illustrative Problem:

A patient takes a lab test and the result comes back positive.

- The test returns a correct positive result in only 75% of the cases in which the disease is actually present,
- and a correct negative result in only 96% of the cases in which the disease is not present.
- Furthermore, 8% of the entire population have this cancer.

How to represent that information?

Representation:

It is useful to represent this information in a graph.

- **•** The graphical information is qualitative
- **•** The nodes represent variables.
- Arcs specify the (in)dependence between variables. Direct arcs represent influence between variables.

The direction of the arc tell us that the value of the variable *disease* influences the value of the variable test.

Naive Bayes Classifier

Assume target function $f : X \rightarrow Y$, where each instance x described by attributes $\langle x_1, x_2 \dots x_n \rangle$. Most probable value of $f(x)$ is:

$$
Y_{MAP} = \underset{y_j \in Y}{\operatorname{argmax}} P(y_j | x_1, x_2 \dots x_n)
$$

\n
$$
Y_{MAP} = \underset{y_j \in Y}{\operatorname{argmax}} \frac{P(x_1, x_2 \dots x_n | y_j) P(y_j)}{P(x_1, x_2 \dots x_n)}
$$

\n
$$
= \underset{y_j \in Y}{\operatorname{argmax}} P(x_1, x_2 \dots x_n | y_j) P(y_j)
$$

Naive Bayes Classifier

Naive Bayes assumption: Attributes are independent given the class.

 $P(x_1, x_2 \ldots x_n | y_j) = \prod_i P(x_i | y_j)$ which gives Naive Bayes classifier:

$$
Y_{NB} = \operatorname*{argmax}_{y_j \in V} P(y_j) \prod_i P(x_i|y_j)
$$

Naive Bayes

- Assume a decision problem with p variables.
- **•** Each variable assume k values
- The joint probability requires to estimate k^p probabilities.
- Assuming that variables are conditionally independent given the class, only requires to estimate $k \times p$ probabilities.

 $(1 + 4)$

B

Naive Bayes Formulae

Naive Bayes can be expressed in addictive form:

$$
P(y_i|\vec{x}) \propto \ln(P(y_i)) + \sum \ln(P(x_j|y_i))
$$

Points out the contribution of each attribute to the decision. • Two class problems:

$$
\ln \frac{P(y_+|\vec{x})}{P(y_-|\vec{x})} \propto \ln \frac{P(y_+)}{P(y_-)} + \sum \ln \frac{P(x_j|y_+)}{P(x_j|y_-)}
$$

$$
\ln \frac{P(y_+|\vec{x})}{P(y_-|\vec{x})} \propto \ln \frac{P(y_+)}{1 - P(y_+)} + \sum \ln \frac{P(x_j|y_+)}{1 - P(x_j|y_+)}
$$

The sign of each term indicates the class the attribute contributes to.

 \mathbb{B}

 $(1 + 4)$

Naive Bayes as a Bayesian Net

イロト イ部 トイ君 トイ君 ト

$p(Y|X1,X2,X3)=P(Y)P(X1|Y)P(X2|Y)P(X3|Y)$

Naive Bayes Algorithm

```
Naive_Bayes_Learn(examples)
Initialize all counts to zero
For each example \{X, y_i\}Nr = Nr + 1Count(y_i) = Count(y_i) + 1For each attribute value x_i \in XCount(x_i, y_i) = Count(x_i, y_i) + 1
```
 $Classify_New_Instance(x)$

$$
y_{NB} = \operatorname*{argmax}_{y_j \in Y} \hat{P}(y_j) \prod_{x_i \in X} \hat{P}(x_i|y_j)
$$

B

Naive Bayes: Example

イロメ イ部メ イ君メ イ君メー

Two representations:

 $P(\text{play}, \text{weather}, \text{temperature}, \text{humidity}, \text{wind}) =$

 $= P(P \mid P)P(W \mid P \mid P \mid T \mid P)$ (Temperature Play) P(Humidity | Play) P(Wind | Play)

イロト イ部 トメ 差 トメ 差 トー

Ğ,

 Ω

Naive Bayes: Counts

Nr. examples: 14 $Play =' Yes' : 9$ $Play =' No' : 5$

Naive Bayes: Distribution Tables

Nr. examples: 14

$$
P(Play = 'Yes') = 9/14
$$

 $P(Play = 'No') = 5/14$

Continuous attributes can be approximated using normal distribution: $N(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $2\sigma^2$

Naive Bayes: Test Example

 $P(Yes|Weather = 'Sunny', Temperature = 66, Humidity = 90, Wind = 'Yes') =$ $= P(Yes)P(Weather = 'Sunny' | Yes)P(Temperature = 66 | Yes)P(Humidity =$ 90|Yes) $P(Wind = 'Yes'|Yes)$

 $P(No|Weather = 'Sunny', Temperature = 66, Humidity = 90, Wind = 'Yes') =$ $= P(No)P(Weather = "Sunny''|No)P(Temperature = 66|No)P(Humidity =$ $90|No$) $P(Wind = "Yes"|No)$

Naive Bayes: Subtleties

 \bullet what if none of the training instances with target value y_i have attribute value x_i ? Then $\hat{P}(x_i|y_j)=0$ and $\hat{P}(y_j)\prod_i \hat{P}(x_i|y_j)=0$

Typical solution is Bayesian estimate for $\hat{P}(\text{x}_i|\text{y}_j)$ $\hat{P}(x_i|y_j) \leftarrow \frac{n_c+mp}{n+m}$ where

- *n* is number of training examples for which $y = y_j$,
- n_c number of examples for which $Y = y_i$ and $X = x_i$
- ρ is prior estimate for $\hat{P}(\textit{x}_{i} | \textit{y}_{j})$
- \bullet *m* is weight given to prior (i.e. number of "virtual" examples)

Discretization

Transform a continuous variable into a set of ordered intervals (bins). Two Main Problems:

- How many Intervals? Generic: Use 10 intervals or min(10, nr. of different values) Bioinformtics: few intervals (2, 3, ...)
- **How to define to borders of each Interval?**

Discretization: Basic Methods

- **Equal width discretization**. Divides the range of observed values for a feature into k equally sized bins. Pos: simplicity, Neg: the presence of outliers.
- **Equal frequency discretization**. Divides the range of observed values into k bins, where (considering n instances) each bin contains n/k values.
- **k-means**. An iterative method that begins with an equal-width discretization, iteratively adjust the boundaries to minimize a squared-error function and only stops when it can not change any value to improve the previous criteria.

Naive Bayes: Analysis

• Conditional independence assumption is often violated

$$
P(x_1, x_2 \ldots x_n | y_j) = \prod_i P(x_i | y_j)
$$

...but it works surprisingly well anyway. Note don't need estimated posteriors $\hat{P}(y_j|x)$ to be correct; need only that argmax yj∈Y $\hat{P}(y_j) \prod$ i $\hat{P}(x_i|y_j) = \text{argmax}$ yj∈Y $P(y_j)P(x_1 \ldots, x_n|y_j)$

- see [Domingos & Pazzani, 1996] for analysis
- Naive Bayes posteriors often unrealistically close to 1 or 0

[Outline](#page-2-0) [Motivation](#page-2-0) [Introduction](#page-21-0) [Bayesian Network Classifiers](#page-32-0) [k-Dependence Bayesian Classifiers](#page-58-0) Links and Reference Bayesian Classifiers [Links and References](#page-66-0) and References and References of the concorder of condensing an

Naive Bayes: Analysis

- Robust to the presence of irrelevant attributes. Suppose a two class problem, where \mathcal{X}_i is an irrelevant attribute: $p(x_i|y_1) = p(x_i|y_2)$. $p(Y | x_1, ..., x_i, ..., x_n) \propto$ $p(Y)p(x_i|c) \prod_{l=1}^{i-1} p(x_l|Y) \prod_{l=i+1}^{n} p(x_l|Y)$ and $p(Y | x_1, ..., x_i, ..., x_n) \propto p(Y | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$
- Redundant variables must be taken into account. Suppose that $X_i = X_{i-1}$ then $p(x_{i-1}|Y) = p(x_i|Y)$ $p(Y | x_1, ..., x_{i-1}, x_i, ..., x_n) \propto$ $p(Y)p(x_{i-1}|Y)p(x_i|Y)\prod_{l=1}^{i-2}p(x_l|Y)\prod_{l=i+1}^{n}p(x_l|Y)$ and

$$
p(Y|x_1,...,x_{i-1},x_i,...,x_n) \propto
$$

$$
p(Y)p(x_i|Y)^2 \prod_{i=1}^{i-2} p(x_i|Y) \prod_{i=i+1}^{n} p(x_i|Y)
$$

Naive Bayes: Summary

- The variability of a dataset is summarized in contingency tables.
	- Requires a single scan over the dataset.
	- The algorithm is Incremental (incorporation of new examples) and decremental (forgetting old examples).
- The dimension of the decision model is independent of the number of examples.
	- Low variance: stable with respect to small perturbations of the training set.

• High bias: the number of possible states is finite.

[Outline](#page-2-0) [Motivation](#page-2-0) [Introduction](#page-21-0) [Bayesian Network Classifiers](#page-32-0) and K-Dependence Bayesian Classifiers [Links and References](#page-66-0) and Reference Bayesian Classifiers Links and References and References and References and References a

Naive Bayes: Extensions

- Techniques that apply different naive Bayes classifiers to different regions of the input space. Recursive Bayes (Langley, 93), Naive Bayes Tree (Kohavi,96).
- **•** Techniques that built new attributes that reflect interdependencies between original attributes. Semi-naive Bayes (Kononenko, 91).
- Processing continuous attributes: Flexible Bayes (G.John), Linear Bayes (Gama, 01)
- Search for better Parameters: Iterative Bayes (Gama, 99)

Successful Stories

- KDDCup 1998: Winner Boosting naive Bayes;
- Coil 1999: Winner Simple naive Bayes;
- The most used classifier in Text Mining;

The Balance-scale Problem

Ğ,

イロト イ部 トイ君 トイ君 ト

Rapid Miner: Naive Bayes

 \Rightarrow

イロト イ部 トイ君 トイ君 トー

Knime: Naive Bayes

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

[Outline](#page-2-0) [Motivation](#page-2-0) [Introduction](#page-21-0) [Bayesian Network Classifiers](#page-32-0) and K-Dependence Bayesian Classifiers [Links and References](#page-66-0) and Reference Bayesian Classifiers Links and References and References and References and References a

Weka: Naive Bayes

Outline

- **[Introduction](#page-21-0)**
- 3 [Bayesian Network Classifiers](#page-32-0)
- 4 [k-Dependence Bayesian Classifiers](#page-58-0)
- 5 [Links and References](#page-66-0)

Entropy

Entropy: measures the randomness of a random variable. Uncertainty of a random discrete variable (Entropy):

$$
H(X) = -\sum P(x) \log_2(P(x))
$$

Conditional Entropy

conditional entropy quantifies the remaining entropy (i.e. uncertainty) of a random variable Y given that the value of a second random variable X is known.

Uncertainty about X after knowing Y:

$$
H(X|Y) = -\sum_{y} P(y) \sum_{x} P(x|y) \log P(x|Y)
$$

Mutual Information

Reduction in the uncertainty of X when Y is known:

$$
I(X, Y) = H(X|Y) - H(X)
$$

$$
I(X, Y) = \sum_{i} \sum_{j} P(x_i, y_j) \log \frac{P(x_i, y_j)}{P(x_i)p(x_j)}
$$

- $I(X, Y) = 0$ if and only if X and Y are independent random variables;
- \bullet I(X,Y) increases with the increase of the degree of dependence between X and Y :

- nonnegative: $I(X, Y) > 0$;
- symmetric: $I(X, Y) = I(Y, X)$.

Example: TAN

Tree augmented naive Bayes

Compute the Mutual Information between all pairs of variables given the Class

$$
I(X, Y|C) = \sum_{c} P(c)I(X, Y|C = c)
$$

- Construct a spanning tree maximizing MI.
- All the variables depends on the class.

$$
p(C, E, S, A) \propto p(C)p(E|C)p(S|C, E)p(A|C, S)
$$

k-Dependency Bayesian Networks

- All the attributes depends on the class
- \bullet Any attribute depends on k other attributes, at most.
- **•** Restricted Bayesian Networks
- \bullet Decision Models of Increase Complexity

k-Dependency Bayesian Networks: a common framework for classifiers with increase (smooth) complexity.

k-Dependency Bayesian Networks

- Compute $I(X_i,\mathcal{C})$ and $I(X_i,X_j|\mathcal{C})$ for all pairs of variables
- **o** Iterate
	- Choose the variable X_{max} not yet in the model that maximizes $I(X_i|C)$
	- Choose the k parents of X_{max} : those with greater $I(X_j, X_{max}|C)$

Factorization:

$$
P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i | Parents(X_i))
$$

where $\mathit{Parents}(X_i)$ denotes immediate predecessors of X_i in graph

Weka: TAN

Outline

- **[Introduction](#page-21-0)**
- 3 [Bayesian Network Classifiers](#page-32-0)
- 4 [k-Dependence Bayesian Classifiers](#page-58-0)
- 5 [Links and References](#page-66-0)

Software Available

- R (package e1071)
- Weka (naive Bayes, TAN models, k-dependence Bayesian classifiers)
- Genie: Bayesian Networks, Influence Diagrams, Dynamic Bayesian Networks (http://genie.sis.pitt.edu/)
- Hugin (http://www.hugin.com/)
- Elvira (http://www.ia.uned.es/ elvira)
- **•** Kevin Murphy's MATLAB toolbox supports dynamic BNs, decision networks, many exact and approximate inference algorithms, parameter estimation, and structure learning

(http://www.ai.mit.edu/ murphyk/Software/BNT/bnt.html)

Free Windows software for creation, assessment and evaluation of belief networks.

(http://www.research.microsoft.com/dtas/msbn/default.htm)

Open source package for the technical computing language R, developed by Aalborg University

(http://www.math.auc.dk/novo/deal)

● http://www.snn.ru.nl/nijmegen

Bibliography

- Gama, Carvalho, Faceli, Lorena, Oliveira Extração de Conhecimento de Dados, Silabo, 2012 (Cap 5)
- **Tom Mitchell,** *Machine Learning***, (chapter 6), McGraw-Hill,** 1997
- R. Duda, P. Hart, D. Stork; Pattern Classification, J. Willey & Sons, 2000
- J.Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, 1988
- P. Domingos, M. Pazzani; On the Optimality of the Simple Bayes Classifier under zero-one loss, Machine Learning, 29
- R. Neapolitan, Learning Bayesian Networks, Prentice Hall, 2004

Would you like to learn more? Wait for SAD ...

