Joao Gama

November 2018

mailto:jgama@fep.up.pt

« Linear machines
— Linear Machine (Perceptron)
— Gradient Descent
— Incremental vs. non-incremental (batch)
— Extension to more than two classes
— Properties of the algorithm

« Multi-layer networks
— The sigmoid function
— An architecture for the XOR
— The Backpropagation algorithm (Backpropagation)
— Extensions

IVIIIESLUITITS 11 U YVEVTIVUPIHTITIHIL U NTUlAdl NTLWUI RS

Deep Neural Network
(Pretraining)
I:i'uemeptron 4
XOR
ADRLINE - e (Backpropagation) |
A A A
Perceptron
| GoldenAge | DarkAgeCAIWinte)
Electronic Brain
1843 1957 1960 1963 1986 1995 2006

1950 1960 1970 1980 1990

S. McCulloch ~ W. Pitts

XAND Y XORY NOTX - ')) — EOWEC Ay — ' s ‘ : 3 § R
? 1 2 e O @ * o) - - e’ -
{ ‘ : t'.'. \'. -) X [} - e —'-. e i
| - TF 1 N . - # D GRS \CE
1IN /TN] | ¢ o 00 — Bt Yor—— = e

* Adjustable Weights « Leamable Weights and Threshold » XOR Problem * Solution o nonfinearly separable protiems + Limiaions of learning prior knowledge * Hierarchical feature Leaming
« Weights are not Leamed * Big computation, local optima and overfitting + Kerned function: Hurman Intervention

 Biological inspiration:

— Taking the nervous system as reference, McCulloh Pits, 1943 present a model
similar to perceptrons.

— The training algorithm and the proof of convergence for perceptrons is presented
by Rosenblatt in 1962.

— Minsky and Papert showed that perceptrons can not represent XOR.
 In the '80s, Rumelhart and McClelland have the backpropagation,

algorithm for training multilayer neural networks.
— One of the algorithms used in pattern recognition.

A neuron: many-inputs / one-
output unit

output can be excited or not
eXC|ted Axon (Carries

signals away)
Incoming signals from other
neurons determine if the neuron
shall excite ("fire")

Output subject to attenuation in
the synapses, which are junction
parts of the neuron

Mucleus

Dendrites {Carry
signals in)

hS

Synapse size changes in
response to learning

Linear Machine
— Wy HtW X FWo X+ AW, X,

Weights
Constant

Weighted
Sum

inputs —
Step Function

19 17

Vectorial Representation:
0(X) = sig(w.X)

Decision Surface:

» Representation of Boolean functions

AND AlBl|c] D |JE|F|G|] H |1 |
\ ¥1 %2 y will | wl wi
. 10101 08 05 05 -1.8
OR

> =‘—> 1 18

5
1 0.8
-8

'
JRRCR R Y
'

—_ =

wil | wl w2
03 05 058 07

0.3
0.3
13

—
—

—
=
v
e | | —

1 1

TN T P ey L |
1

[N P P T]

—
o]

5
1 02
5

./ How to learn w;?

The i1dea behind the Algorithm:

 Initialize the weights with a small random number

1. For each example x
1. Compute the result of the linear machine: sign(x . w)
2. If the result is correct, go to next example

3. If predictis 1 and the observed value is O (false positive)
1. Update the weights by subtracting a delta

4. If predict is 0 and the observed value is 1 (false negative)
1. Update the weights by adding a delta

2. If any example has been misclassified go to step 1
3. Otherwise, return the current value of the weights

— Updating the weights (delta rule):

W, (t +1) = w. (t) + 7(Observed — Predicted) x.
where 77 is the learning rate

« Assume a linear machine:
WHW, X W™ X+, .+ W %X,

— The goal is to learn the coefficients w; that minimize the square error:

-1 - 2
E(w;) = %2 2(t;-pg)
— Sum of the square of the differences bwtween the observed value (t;) and the
predict value (py)

— Basic 1dea:

« Changing the coefficients to reduce the error following the
downward direction of the gradient.

 Error surface in the parameters space:
» The square error defines a parabolic surface.

Gradient Descent

25

Q)
204 (0
N et
NN S
Nw S
5 S
& N S

10

« The partial derivative of E(w) (with respect to each coefficient) can be

computed as:

Gradient:

VE(W){(?WO ~

Learning Rule:
W < W+ AW
AW = —-nVE(W)
AW, = -5 —
Tow

8W 8W22(d Py)’

%Ei = Z(td = Py) (—%ig)

AW, :UZ(td — Py)X

deD

11

e Does not assume any
distribution for the data

« Converge to a solution if the
samples are linearly separable.

 The figure illustrates the .
convergence of a linear
machine.

A linear machine defines
decision surfaces that are .
hyperplanes.

— ltis able to represent AND, OR, - l | . |
and other Boolean functions. 2 - 0 1 2

— It is not capable of representing
XOR

12

13

 Linear machines (as well as discriminant functions) only define linear
decision surfaces.
« Structuring linear machines in layers is possible to define non-linear

decision surfaces
— The combination of the linear units is also linear.
— Non-linear unit : the sigmoid function.

14

1ssex >0
o(x) =
-1ssex <0

The sigmoid function:

1

o(x) =
() 1+e™

Xe R

0(x) €[0:1]

Interesting property:

o0 (X)
OX

= 0o(x)@ — o(x))

¥

¥

15

Adaptive interaction between individual neurons
Power: collective behavior of interconnected neurons

Input

1 Y
k B2
:

K Vi

Output

16

e A solution for XOR

sigmoide(x) = L s |

1+exp(—x)

x1

X2

+1

+1

+1

+1

+1

+1

X2

17

After 1000 iterations:

The decision surface:

4| B 5 D E F H |]
1 w1 w2 w3 wld wid wilb w?1 w?? w23
2530846 -3R3912 -3R4R2R 2079875 57906 -5 74641 S804 7 0EATS -7 40427
3
4 577 352 -354 -5 51
a
b %1 xZ ¥ H1 H3
7 I I I 5308416 0 995075 2 0759875 0888932 -2 7447 0 0R0355
B 1 I 1 1 BEE29R 0841482 -3 71972 0023667 2 AE3388 0 920785
g I 1 1 1602155 0840527 -3 BRRG4 00245928 2AR7349 092873
10 1 1 I S O7REY 0121643 -9 4RR1S 7 F4E-05 229678 009139

18

A mapper relates input X with output Y o T

Parameters or weights W |
Linear output neuron O X _’i W S_'@_ Y
Target output T :
Errore

We can train ANN or other mappers with backpropagation and define a
cost criterion to generate the adequate mapper

pad
X g(x,w) _y

Performance
criterion
Optimizing

algurithm

l T {larget]

19

» Algorithm for a MLP with 3 layers

ZError Calculation

> Output Y

Actual algorithm for a 3-ayer network (only one hidden layer):

Hidden Layer Hij

Input Layer Xi

initialize network weights (often small random values)
do
forFach training example ex
prediction = neural-net-output (network, ex) // forvard pass
actual = teacher-putput (ex)
compute error (prediction - actual) at the cutput units
compute ﬁltﬂh for all weights from hidden layer to output layer // backward pass
compute Zlﬂﬁ for all weights from input layer to hidden layer // backward pass continuved
update network weights

until all examples classified correctly or stopping criterion satisfied
return the network

Starting pt.

[ocal minima

Error

Global minima

21

Forward the example on the network:
Ohl =5-3*1-3*1 =-1 s(1) =0.269
Oh2 = 2-5*1-5*1 = -8 5(8) = 0.0003
Oh3 =-3+7*0.269-7*0.0003=-1.119 s(1.119) =0.25

Propagate the error backwards
dOh3 = 0.25*(1-0.25)*(0-0.25) = -0.046
dOh2 = 0.0003*(1-.0003)*(-7*.0.25) = 0.0006
dOhl1 =.269 * (1-0.269)(7*0.25) = -0.34

Update the weights
wll =5+ -0.34*1
wl2=-3+-0.34*1
w13= -3+ -0.34*1

22

» Desired output of the training examples

 Error = difference between actual & desired output

« Change weight relative to error size

 Calculate output layer error, then propagate back to previous layer
* Improved performance, very common!

If the desired and actual output are both active or both inactive,
Increment the connection weight by the learning rate, otherwise
decrement the weight by the learning rate.

23

» The backpropagation algorithm implements a search using gradient descent in the
space defined by the weights of the network.

— In multi-layer networks of the error surface may contain several local minima.
— Not guarantee to find a global minimum.
— In practice, often works well (can run multiple times)
— Easily generalized to arbitrary directed graphs
» A black-box. Hard to explain or gain intuition.

« Itis possible to use the algorithm either
— Non-incremental version: correction of the weights after each epoch

— Incremental (stochastic) version: correction of weights after seeing an example
« More effective to escape from local minima

« Minimizes error over training examples

— Will it generalize well to subsequent examples?
« Training can take thousands of iterations !

— slow!

— Using network after training is very fast

24

» When should we finish training the network?
» Stopping Criteria:
> |If stopping too early we run the risk of getting a network not yet trained.
> |If stopping too late: danger of overfiting (adjustment to noise in the data)
» Usual criteria:
» Based on the error in the training set
» When the error in the training set is below a certain limit.
> Error based on a evaluation set (independent from the training set)
» When the error on the validation set has reached a minimum.

How Overfitting affects Prediction

Underfitting Overfitting

Predictive
Error

Error on Test Data

Error on Training Data

Model Complexity

—
Ideal Range
for Model Complexity

25

 The definition of the network topology can be problematic

— The number of nodes in the hidden layer
» Few nodes: underfitting
» Many nodes: overfitting

— There are no criteria for defining the number of nodes in the

hidden layer

— Effect of learning rate

« A learning rate
— Little has the effect of learning times higher | / i
— High may lead to non-convergence. Rl e 1 i

”I TN /

ety

atttirn U

) 4 TN
]

,,,,,,,
il
Bt

‘II" HIlT)

[ininnts

ATt weoht vale
Crroe surtace for Sifferent noural network weights

26

« Use when:
— Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
— Output is discrete or real valued
— Output is a vector of values
— Possibly noisy data
— Form of target function is unknown
— Human readability of result is unimportant

« Examples:
— Speech phoneme recognition [Waibel]
— Image classification [Kanade, Baluja, Rowley]
— Financial prediction

27

« Optimal number of hidden neurons

— Too many hidden neurons: you get an over fit, training set is memorized, thus
making the network useless on new data sets

— Not enough hidden neurons:
network is unable to learn problem concept

« Overtraining:

— Too much examples, the ANN memorizes the examples instead of the general
idea

« Generalization vs. specialization trade-off:
hidden nodes & training samples

28

* Initialize the weights with small random values
— [-0.05;0.05]

 Shuffling the training set between epochs
— Change the sequence of the examples

» The learning rate must start with a high value that decreases
progressively

 Train the network several times using different initialization of the
weights

29

* Representation

— The multilayer networks (MLP) can approach any function:

« Boolean Functions
— Any Boolean function can be represented by a network with one hidden layer

e Continuous functions

— Any function can be approximated remains limited (with an arbitrarily small error) for a
network with one hidden layer (using sigmoid) and a drive (not run) output.

* Arbitrary functions

— Any function can be approximated (with an arbitrarily small error) by a network with two
hidden layers.

« Capacity
— the amount of information that can be stored in the network

— The capacity of a neural network is dense.
« ability to learn any function given enough data

30

e Generalization

— The generalization ability of examples not used for training raises problems of
overfitting and over-search.

— These problems arise when the network capacity significantly exceeds the
number of free parameters needed .

« Convergence

— There may exist many local minima. This depends on the cost function and the
model.

— The optimization method used might not be guaranteed to converge when far
away from a local minimum.

— For a very large amount of data or parameters, some methods become
Impractical. In general, it has been found that theoretical guarantees regarding
convergence are an unreliable guide to practical application.

31

Learning Hidden Layer Representations

Learned hidden layer representation:

Inputs Qutputs
Input Hidden Output
Values
10000000 — 89 .04 .08 — 10000000
01000000 - .01 .11 .88 — (01000000
00200000 - .01 .97 .27 — (00100000
00020000 - .99 .97 .11 - 00010000

00001000 — .03 .05 .02 - 00001000
00000200 - 22 .99 99 - 00000100
0000000 — 80 .01 98 - 00000010
00000001 - .60 94 .01 - 000000OL

32

AIms to discover multiple levels of distributed representations.
It relies on hierarchical architectures to learn high-level abstractions in
data

Feature Extraction
Construction

Raw Input Classifier

m] Do
o o g
o o
o o — Person
5 8 :
° b — Cat
e N o —
s
o o — Bird
. . o o -
Convolution Max pooling g g Fizh
I | 0 _I — Fox
Convolutional Lavers + Pooling lavers Fully connected layers

General CNN architecture (Guo et al., 2016)

33

 The Cascade Correlation architecture

— Neural network that adds new neurons in the hidden layer has the training
proceeds.

* Recurrent Networks b b

54

x(r)

(a) Feedforward network () Recurrent network

« Redes Kohonen
— SOM (self-organization maps)

 Bibliography
— Tom Mitchell, Machine Learning, McGraw-Hill, 1997

34

nnet{nnet) E. Documentation

Fit Neural Networks
Description
Fit single-hidden-layer neural network, possibly with skip-layer connections.
Usage

nnet (X, ...}

#% 53 method for class 'formula':
nnet (formula, data, weights, .
subset, na.action, contrasts = HUOLL)

#% Default 53 method:

nnet(x, ¥, weights, =size, Wts, mask,
limout = FALSE, entropy = FALSE, =softmax = FA4LSE,
cenzored = FALSE, skip = FAL3E, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWt=s = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)

Arguments

formula A formula of the form cla== ~ =1 + =2 + ...

x matrix or data frame of x values for examples.

v matrix or data frame of target valies for examples.

welghts (case) weights for each example — if missing defaults to 1.

=ize mumber of units in the hidden laver. Can be zero if there are skip-laver units.

data Data frame from which variables specified in formula are preferentially to be taken.

subzet An index vector specifving the cases to be used m the tramine sample. (NOTE- If erven. this arcument must be named.)

35

Run the following code in R
— library(nnet)
— data(Boston, package = "MASS")
— p <- sample(nrow(Boston), 0.7 * nrow(Boston))
— train <- Boston[p,]
— test <- Boston[-p,]
— nn <- nnet(medv ~ ., train, size = 20, decay = 0.001, maxit = 1000,linout = T)
— prevs <- predict(nn, test)
— mae.nn <- mean(abs(prevs - test[, "medv"]))
— mse.nn <- mean((prevs - test[, "medv''])"2)

— plot(teste[, "medv"], prevs, main = “Neural Net Predictions", ylab = “Observed
Values")

— abline(0, 1, Ity = 2, col = "red*)

Try for different configurations of the ANN

36

newifl AMORE) E Documentation

Create a Multilayer Feedforward Neural Network

Description

Creates a feedforward artificial neural network according to the stucture established by the AMORE package standard.

Usage

newff (n.neurons, learning.rate.global, momentum.global, error.criterium, S5tao, hidden.laver, output.laver, method)

Arguments

n.Neurons Numeric vector containing the number of neurons of each laver. The first element of the vector is the number of input neurons,

the last is the number of output neurons and the rest are the mumber of newron of the different hidden lavers.
learning.rate.global [earning rate at which every neuron is trained.

momentum. global Momentum for every nenron. Needed by several training methods.
error.criterium Criterimm used to measure to proximity of the neural network prediction to its target. Currently we can choose amongst:

s "LMS": Least Mean Squares.
s "LMLS": Least Mean Logarithm Squared (Liano 1996).
s "TAO": TAO Error (Pernia, 2004).

Stao Stao parameter for the TAO error criteriom. Unused by the rest of criteria.
hidden.layer Activation function of the hidden layver neurons. Available functions are:

- "P‘[]IEH]]"_

- "tﬂnsig"_

» sgmoid. 37

= Weka 3.5.8 - Explorer

|I_I!E|I! ¥

(= [e

Program Applications Tools Visualization Windows Help

|z Explorer
Preprocess | Classify | Cluster I Associate | Select attributesl 'u’lwaliz‘e|
Classifier

| Choose |MultilayerPerceptron -L0.3-M 0.2 -H500-¥ D-50-E 20 Ha

Test options Classifier output

() Use training set
Sigmoid Hede 0O

(1 Supplied test set Set...
- Inputs Weights
Cross-validation Folds |10 Threshold -3.5015971588434005
) Percentage spit o [gs Node 3 -1.0058110853859954
Node 4 9.07503844669134
[More options...] Node 5 -4.107780453339232

Sigmoid Heode 1
Inputs Weights

(Mom) dass -

15:52:52 - functions. MultilayerPerceptron Sigmoid Node 2

Inputs Weights

Sigmoid Hede 3
Inputs Weights

Attrib sepallength

Attrib sepalwidth

Attrib petallength

Attrib petalwidth
Sigmoid Neode 4

Inputs Weights

Attrib sepallength
Attrib sepalwidth
Zttribk petallength

Threshold 1.0692845992273172
Stop Node 3 3.8098873687729399
Hode 4 —9.762910360340262

Result list (right-dlick for options) Node 5 ~£.59913449315134

Threshold -1.00717623853436442
Hode 3 -4.218406813382704
Hode 4 -3.6260596863211187

Node 5 &.805122981737844

Threshold 3.3824855566856808

0.9099827458022274
1.567513882753133¢

-5.03733810731983948
-4.915469682506095

Threshold -3.3305735922918323

-1.1116750023770103
3.1250096566676533
-4.133137022912303

| oal
Thu
(=]

L] Oct 2009 2

S MT WTFS

12 3
4 5 67 B %W
11 12 13 14 15 16 17
18 19 20 21(22] 23 24
15 26 17 18 19 W0 N

Add Mew Item
CIFCT
[ABREL 222043572
] A3ES (MadSad) 16 ..
[ICML-20 Qct

on ol o

38

4 Dialog - 2.2 - RProp MLP Learner E'Eu

File

Options | General Node Settings|

RProp MLP Learner Maximum nurmber of ikerations: 100 Iil
File Reader
G}//@ Mumber of hidden layers:
& '@ Mumber of hidden neurons per layer: BE'
=9 Fce)
NDdE 1 Nude 2
. class column:

Ignore Missing Values

39

=&
Mode 1

RProp MLP Learmer

Mode 2

ea Ermmor Plot - 2:2 - RProp MLP Learner

File

T4.2G61

F1.712—]

B89.212—]

B5.712—]

B54.212—]

51.712—]

58.212—

S5. 712

54212

51.712—]

49.2'12_I

32

=) T2
(=L

=1

=1=]
100

Default Settings

Ise Mode | Selection

[Fit ko size

]

[Background Color

]

40

« Linear Machines
— Perceptrons

— Gradient Descent
 Derivtion of the delta rule
 Incremental versus ndo-incremental (batch)

— Extension for more than 2 classes
— Main properties
« Multi-layer networks
— The sigmoide function
— The backpropagation algorithm
« Analisis
— Representation and Generalization

41

