
1

Multi-layer Perceptron

João Gama

jgama@fep.up.pt

November 2018

mailto:jgama@fep.up.pt

2

Summary

• Linear machines

– Linear Machine (Perceptron)

– Gradient Descent

– Incremental vs. non-incremental (batch)

– Extension to more than two classes

– Properties of the algorithm

• Multi-layer networks

– The sigmoid function

– An architecture for the XOR

– The Backpropagation algorithm (Backpropagation)

– Extensions

Developments of Neural Networks

4

Perceptrons and Neural Nets

• Biological inspiration:

– Taking the nervous system as reference, McCulloh Pits, 1943 present a model

similar to perceptrons.

– The training algorithm and the proof of convergence for perceptrons is presented

by Rosenblatt in 1962.

– Minsky and Papert showed that perceptrons can not represent XOR.

• In the '80s, Rumelhart and McClelland have the backpropagation,

algorithm for training multilayer neural networks.

– One of the algorithms used in pattern recognition.

Inspiration from Neurobiology

• A neuron: many-inputs / one-
output unit

• output can be excited or not
excited

• incoming signals from other
neurons determine if the neuron
shall excite ("fire")

• Output subject to attenuation in
the synapses, which are junction
parts of the neuron

5

6

Linear Machines(Perceptrons)

• Linear Machine

– wo+w1x1+w2x2+...+wnxn

Decision Surface:
= ni

ii
xw

...0

).()(xwsigxo


=

Vectorial Representation:

7

Linear Machines

• Representation of Boolean functions

x1

x2

1



x1

x2

1



-.8

.5

.5

.3

.5

.5

How to learn wi?

AND

OR

8

Linear Machine

The idea behind the Algorithm:

• Initialize the weights with a small random number

1. For each example x

1. Compute the result of the linear machine: sign(x . w)

2. If the result is correct, go to next example

3. If predict is 1 and the observed value is 0 (false positive)

1. Update the weights by subtracting a delta

4. If predict is 0 and the observed value is 1 (false negative)

1. Update the weights by adding a delta

2. If any example has been misclassified go to step 1

3. Otherwise, return the current value of the weights

– Updating the weights (delta rule):

rate learning theis

)Pr()()1(





where

xedictedObservedtwtw iii −+=+

9

Gradient Descent

• Assume a linear machine:
w0+w1*x1+w2*x2+...+wn*xn

– The goal is to learn the coefficients wi that minimize the square error:

E(wi) = ½ (td-pd)
2

– Sum of the square of the differences bwtween the observed value (td) and the

predict value (pd)

– Basic idea:

• Changing the coefficients to reduce the error following the

downward direction of the gradient.

10

Gradient Descent

• Error surface in the parameters space:
• The square error defines a parabolic surface.

11

Deriving the Delta Rule

• The partial derivative of E(w) (with respect to each coefficient) can be

computed as:

















=

nw

E

w

E
wE ,...,)(

0







−−=




−



=







))((

)(
2

1 2

iddd

i

Dd

dd

ii

xpt
w

E

pt
ww

E

idd

Dd

di xptw)(−= 




Gradient:

i

i
w

E
w

wEw

www




−=

−=

+



)(



Learning Rule:

12

Analysis

• Does not assume any

distribution for the data

• Converge to a solution if the

samples are linearly separable.

• The figure illustrates the

convergence of a linear

machine.

• A linear machine defines

decision surfaces that are

hyperplanes.

– It is able to represent AND, OR,

and other Boolean functions.

– It is not capable of representing

XOR

Multilayer Perceptrons

13

14

Multi-layer perceptrons

• Linear machines (as well as discriminant functions) only define linear

decision surfaces.

• Structuring linear machines in layers is possible to define non-linear

decision surfaces

– The combination of the linear units is also linear.

– Non-linear unit : the sigmoid function.

15

The sigmoid function

x1

x2

xn



w1

w2

wn

w0

1xe
xo

−+
=

1

1
)(

x1

x2

xn



w1

w2

wn

w0

1








=

0 x sse 1-

0 xsse 1
)(xo

))(1)((
)(

xoxo
x

xo
−=





The sigmoid function:

Interesting property:

]1;0[)(



xo

x

Artificial Neural Networks

Adaptive interaction between individual neurons

Power: collective behavior of interconnected neurons

16

17

Solving XOR

• A solution for XOR

x1 x2 Y

0 0 0

0 +1 +1

+1 0 +1

+1 +1 0H11 H12

H2

x1 x2

x1

x2

)exp(1

1
)(

x
xsigmoide

−+
=

-15 -10 -5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f (
x)

1

1

W11

W12
W13

W14

W15

W16

W21

W22
W23

18

Solving Xor

After 1000 iterations:

The decision surface:

Training a MLP

19

20

The Backpropagation Algorithm

• Algorithm for a MLP with 3 layers

Stochastic Gradient Descent

21

22

Illustrative example

Forward the example on the network:

Oh1 = 5-3*1-3*1 = -1 s(1) = 0.269

Oh2 = 2-5*1-5*1 = -8 s(8) = 0.0003

Oh3 = -3+7*0.269-7*0.0003=-1.119 s(1.119) = 0.25

Propagate the error backwards

dOh3 = 0.25*(1-0.25)*(0-0.25) = -0.046

dOh2 = 0.0003*(1-.0003)*(-7*.0.25) = 0.0006

dOh1 = .269 * (1-0.269)(7*0.25) = -0.34

Update the weights

w11 = 5 + -0.34*1

w12 = -3 + -0.34 * 1

w13= -3+ -0.34*1

....

Back propagation

• Desired output of the training examples

• Error = difference between actual & desired output

• Change weight relative to error size

• Calculate output layer error, then propagate back to previous layer

• Improved performance, very common!

if the desired and actual output are both active or both inactive,

increment the connection weight by the learning rate, otherwise

decrement the weight by the learning rate.

23

24

The backpropagation algorithm

• The backpropagation algorithm implements a search using gradient descent in the

space defined by the weights of the network.

– In multi-layer networks of the error surface may contain several local minima.

– Not guarantee to find a global minimum.

– In practice, often works well (can run multiple times)

– Easily generalized to arbitrary directed graphs

• A black-box. Hard to explain or gain intuition.

• It is possible to use the algorithm either

– Non-incremental version: correction of the weights after each epoch

– Incremental (stochastic) version: correction of weights after seeing an example

• More effective to escape from local minima

• Minimizes error over training examples

– Will it generalize well to subsequent examples?

• Training can take thousands of iterations !

– slow!

– Using network after training is very fast

25

Overfiting
➢ When should we finish training the network?

➢ Stopping Criteria:

➢ If stopping too early we run the risk of getting a network not yet trained.

➢ If stopping too late: danger of overfiting (adjustment to noise in the data)

➢Usual criteria:

➢ Based on the error in the training set

➢ When the error in the training set is below a certain limit.

➢ Error based on a evaluation set (independent from the training set)

➢ When the error on the validation set has reached a minimum.

26

Issues

• The definition of the network topology can be problematic

– The number of nodes in the hidden layer

• Few nodes: underfitting

• Many nodes: overfitting

– There are no criteria for defining the number of nodes in the

hidden layer

– Effect of learning rate

• A learning rate

– Little has the effect of learning times higher

– High may lead to non-convergence.

When to Consider Neural Networks

• Use when:

– Input is high-dimensional discrete or real-valued (e.g. raw sensor input)

– Output is discrete or real valued

– Output is a vector of values

– Possibly noisy data

– Form of target function is unknown

– Human readability of result is unimportant

• Examples:

– Speech phoneme recognition [Waibel]

– Image classification [Kanade, Baluja, Rowley]

– Financial prediction

27

Generalization vs. specialization

• Optimal number of hidden neurons

– Too many hidden neurons: you get an over fit, training set is memorized, thus

making the network useless on new data sets

– Not enough hidden neurons:

network is unable to learn problem concept

• Overtraining:

– Too much examples, the ANN memorizes the examples instead of the general

idea

• Generalization vs. specialization trade-off:

hidden nodes & training samples

28

29

Tips

• Initialize the weights with small random values

– [-0.05;0.05]

• Shuffling the training set between epochs

– Change the sequence of the examples

• The learning rate must start with a high value that decreases

progressively

• Train the network several times using different initialization of the

weights

30

Expressive Capabilities

• Representation

– The multilayer networks (MLP) can approach any function:

• Boolean Functions

– Any Boolean function can be represented by a network with one hidden layer

• Continuous functions

– Any function can be approximated remains limited (with an arbitrarily small error) for a

network with one hidden layer (using sigmoid) and a drive (not run) output.

• Arbitrary functions

– Any function can be approximated (with an arbitrarily small error) by a network with two

hidden layers.

• Capacity

– the amount of information that can be stored in the network

– The capacity of a neural network is dense.

• ability to learn any function given enough data

Properties

• Generalization

– The generalization ability of examples not used for training raises problems of

overfitting and over-search.

– These problems arise when the network capacity significantly exceeds the

number of free parameters needed .

• Convergence

– There may exist many local minima. This depends on the cost function and the

model.

– The optimization method used might not be guaranteed to converge when far

away from a local minimum.

– For a very large amount of data or parameters, some methods become

impractical. In general, it has been found that theoretical guarantees regarding

convergence are an unreliable guide to practical application.

31

32

Autoencoders

Deep Learning

33

General CNN architecture (Guo et al., 2016)

Raw Input Feature Extraction

Construction
Classifier

Aims to discover multiple levels of distributed representations.

It relies on hierarchical architectures to learn high-level abstractions in

data

34

Developments

• The Cascade Correlation architecture

– Neural network that adds new neurons in the hidden layer has the training

proceeds.

• Recurrent Networks

• Redes Kohonen

– SOM (self-organization maps)

• Bibliography

– Tom Mitchell, Machine Learning, McGraw-Hill, 1997

R – library(nnet)

35

ANN in R

• Run the following code in R

– library(nnet)

– data(Boston, package = "MASS")

– p <- sample(nrow(Boston), 0.7 * nrow(Boston))

– train <- Boston[p,]

– test <- Boston[-p,]

– nn <- nnet(medv ~ ., train, size = 20, decay = 0.001, maxit = 1000,linout = T)

– prevs <- predict(nn, test)

– mae.nn <- mean(abs(prevs - test[, "medv"]))

– mse.nn <- mean((prevs - test[, "medv"])^2)

– plot(teste[, "medv"], prevs, main = “Neural Net Predictions", ylab = “Observed
Values")

– abline(0, 1, lty = 2, col = "red“)

• Try for different configurations of the ANN

36

R – library(AMORE)

37

WEKA

38

KNIME

39

KNIME

40

41

Summary

• Linear Machines

– Perceptrons

– Gradient Descent

• Derivtion of the delta rule

• Incremental versus não-incremental (batch)

– Extension for more than 2 classes

– Main properties

• Multi-layer networks

– The sigmoide function

– The backpropagation algorithm

• Analisis

– Representation and Generalization

