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Summary

• Linear machines

– Linear Machine (Perceptron)

– Gradient Descent

– Incremental vs. non-incremental (batch)

– Extension to more than two classes

– Properties of the algorithm

• Multi-layer networks

– The sigmoid function

– An architecture for the XOR

– The Backpropagation algorithm (Backpropagation)

– Extensions



Developments of Neural Networks
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Perceptrons and Neural Nets

• Biological inspiration:

– Taking the nervous system as reference, McCulloh Pits, 1943 present a model 

similar to perceptrons.

– The training algorithm and the proof of convergence for perceptrons is presented 

by Rosenblatt in 1962.

– Minsky and Papert showed that perceptrons can not represent XOR.

• In the '80s, Rumelhart and McClelland have the backpropagation, 

algorithm for training multilayer neural networks.

– One of the algorithms used in pattern recognition.



Inspiration from Neurobiology

• A neuron: many-inputs / one-
output unit

• output can be excited or not 
excited

• incoming signals from other 
neurons determine if the neuron 
shall excite ("fire") 

• Output subject to attenuation in 
the synapses, which are junction 
parts of the neuron
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Linear Machines(Perceptrons)

• Linear Machine
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Linear Machines

• Representation of Boolean functions
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Linear Machine

The idea behind the Algorithm:

• Initialize the weights with a small random number

1. For each example x

1. Compute the result of the linear machine: sign(x . w)

2. If  the result is correct, go to next example

3. If  predict is 1 and the observed value is 0 (false positive)

1. Update the weights by subtracting a delta

4. If predict is 0 and the observed value is 1 (false negative)

1. Update the weights by adding a delta

2. If any example has been misclassified go to step 1

3. Otherwise, return the current value of the weights

– Updating the weights (delta rule):

rate learning  theis  
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Gradient Descent

• Assume a linear machine:
w0+w1*x1+w2*x2+...+wn*xn

– The goal is to learn the coefficients wi that minimize the square error:

E(wi) = ½ (td-pd)
2

– Sum of the square of the differences bwtween the observed value (td) and the 

predict value (pd)

– Basic idea:

• Changing the coefficients to reduce the error following the 

downward direction of the gradient.



10

Gradient Descent

• Error surface in the parameters space:
• The square error defines a parabolic surface. 
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Deriving the Delta Rule

• The partial derivative of E(w) (with respect to each coefficient) can be 

computed as:
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Analysis

• Does not assume any 

distribution for the data

• Converge to a solution if the 

samples are linearly separable.

• The figure illustrates the 

convergence of a linear 

machine.

• A linear machine defines 

decision surfaces that are 

hyperplanes.

– It is able to represent AND, OR, 

and other Boolean functions.

– It is not capable of representing 

XOR



Multilayer Perceptrons
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Multi-layer perceptrons

• Linear machines (as well as discriminant functions) only define linear 

decision surfaces.

• Structuring linear machines in layers is possible to define non-linear 

decision surfaces

– The combination of the linear units is also linear.

– Non-linear unit : the sigmoid function.



15

The sigmoid function
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Artificial Neural Networks

Adaptive interaction between individual neurons

Power: collective behavior of interconnected neurons
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Solving XOR

• A solution for XOR
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Solving Xor

After 1000 iterations:

The decision surface:



Training a MLP
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The Backpropagation Algorithm

• Algorithm for a MLP with 3 layers



Stochastic Gradient Descent
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Illustrative example

Forward the example on the network:

Oh1 = 5-3*1-3*1 = -1  s(1) = 0.269

Oh2 = 2-5*1-5*1 = -8 s(8) = 0.0003

Oh3 = -3+7*0.269-7*0.0003=-1.119  s(1.119) = 0.25

Propagate the error backwards

dOh3 = 0.25*(1-0.25)*(0-0.25) = -0.046

dOh2 = 0.0003*(1-.0003)*(-7*.0.25) = 0.0006

dOh1 = .269 * (1-0.269)(7*0.25) = -0.34

Update the weights

w11 = 5 + -0.34*1

w12 = -3 + -0.34 * 1

w13= -3+ -0.34*1

.... 



Back propagation

• Desired output of the training examples

• Error = difference between actual & desired output

• Change weight relative to error size

• Calculate output layer error, then propagate back to previous layer

• Improved performance, very common!

if the desired and actual output are both active or both inactive, 

increment the connection weight by the learning rate, otherwise 

decrement the weight by the learning rate. 
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The backpropagation algorithm

• The backpropagation algorithm implements a search using gradient descent in the 

space defined by the weights of the network.

– In multi-layer networks of the error surface may contain several local minima.

– Not guarantee to find a global minimum.

– In practice, often works well (can run multiple times)

– Easily generalized to arbitrary directed graphs

• A black-box. Hard to explain or gain intuition.

• It is possible to use the algorithm either

– Non-incremental version: correction of the weights after each epoch

– Incremental (stochastic) version: correction of weights after seeing an example

• More effective to escape from local minima

• Minimizes error over training examples

– Will it generalize well to subsequent examples?

• Training can take thousands of iterations !

– slow!

– Using network after training is very fast
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Overfiting
➢ When should we finish training the network?

➢ Stopping Criteria:

➢ If stopping too early we run the risk of getting a network not yet trained.

➢ If stopping too late: danger of overfiting (adjustment to noise in the data)

➢Usual criteria:

➢ Based on the error in the training set

➢ When the error in the training set is below a certain limit.

➢ Error based on a evaluation set (independent from the training set)

➢ When the error on the validation set has reached a minimum.
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Issues

• The definition of the network topology can be problematic

– The number of nodes in the hidden layer

• Few nodes: underfitting

• Many nodes: overfitting

– There are no criteria for defining the number of nodes in the 

hidden layer

– Effect of learning rate

• A learning rate

– Little has the effect of learning times higher

– High may lead to non-convergence. 



When to Consider Neural Networks

• Use when:

– Input is high-dimensional discrete or real-valued (e.g. raw sensor input)

– Output is discrete or real valued

– Output is a vector of values

– Possibly noisy data

– Form of target function is unknown

– Human readability of result is unimportant

• Examples:

– Speech phoneme recognition [Waibel]

– Image classification [Kanade, Baluja, Rowley]

– Financial prediction
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Generalization vs. specialization

• Optimal number of hidden neurons 

– Too many hidden neurons: you get an over fit, training set is memorized, thus 

making the network useless on new data sets

– Not enough hidden neurons:

network is unable to learn problem concept 

• Overtraining: 

– Too much examples, the ANN memorizes the examples instead of the general 

idea

• Generalization vs. specialization trade-off:

# hidden nodes & training samples

28
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Tips

• Initialize the weights with small random values

– [-0.05;0.05]

• Shuffling the training set between epochs

– Change the sequence of the examples

• The learning rate must start with a high value that decreases 

progressively

• Train the network several times using different initialization of the 

weights
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Expressive Capabilities

• Representation

– The multilayer networks (MLP) can approach any function:

• Boolean Functions

– Any Boolean function can be represented by a network with one hidden layer

• Continuous functions

– Any function can be approximated remains limited (with an arbitrarily small error) for a 

network with one hidden layer (using sigmoid) and a drive (not run) output.

• Arbitrary functions

– Any function can be approximated (with an arbitrarily small error) by a network with two 

hidden layers.

• Capacity

– the amount of information that can be stored in the network

– The capacity of a neural network is dense.

• ability to learn any function given enough data



Properties

• Generalization

– The generalization ability of examples not used for training raises problems of 

overfitting and over-search.

– These problems arise when the network capacity significantly exceeds the 

number of free parameters needed . 

• Convergence

– There may exist many local minima. This depends on the cost function and the 

model. 

– The optimization method used might not be guaranteed to converge when far 

away from a local minimum. 

– For a very large amount of data or parameters, some methods become 

impractical. In general, it has been found that theoretical guarantees regarding 

convergence are an unreliable guide to practical application.
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Autoencoders



Deep Learning
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General CNN architecture (Guo et al., 2016)

Raw Input Feature Extraction

Construction
Classifier

Aims to discover multiple levels of distributed representations.

It relies on hierarchical architectures to learn high-level abstractions in 

data



34

Developments

• The Cascade Correlation architecture 

– Neural network that adds new neurons in the hidden layer has the training 

proceeds.

• Recurrent Networks

• Redes Kohonen

– SOM (self-organization maps)

• Bibliography

– Tom Mitchell, Machine Learning, McGraw-Hill, 1997



R – library(nnet)
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ANN in R

• Run the following code in R

– library(nnet)

– data(Boston, package = "MASS")

– p <- sample(nrow(Boston), 0.7 * nrow(Boston))

– train <- Boston[p, ]

– test <- Boston[-p, ]

– nn <- nnet(medv ~ ., train, size = 20, decay = 0.001, maxit = 1000,linout = T)

– prevs <- predict(nn, test)

– mae.nn <- mean(abs(prevs - test[, "medv"]))

– mse.nn <- mean((prevs - test[, "medv"])^2)

– plot(teste[, "medv"], prevs, main = “Neural Net Predictions", ylab = “Observed
Values")

– abline(0, 1, lty = 2, col = "red“)

• Try for different configurations of the ANN
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R – library(AMORE)
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WEKA
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KNIME
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KNIME
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Summary

• Linear Machines

– Perceptrons

– Gradient Descent

• Derivtion of the delta rule

• Incremental versus não-incremental (batch)

– Extension for more than 2 classes

– Main properties

• Multi-layer networks

– The sigmoide function

– The backpropagation algorithm

• Analisis

– Representation and Generalization


