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Multiple Models

Different learning algorithms exploit:

Different languages for representing generalizations of the
examples;

Explore different search spaces;

Use different evaluation functions of the hypothesis;
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Multiple Models

How to take advantage of these differences?

Would be possible to obtain an ensemble of classifiers with a
performance better than each individual classifier?

Observation: There is no overall better algorithm.

Experimental results from Statlog and Metal project;

Theoretical Results: No free lunch theorems.
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A necessary condition

A necessary condition

An ensemble of classifiers improve over individual classifiers iif they
disagree. Hansen & Salamon - 1990

How to measure the degree of disagreement?
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The Error Correlation Metric

The Error Correlation Metric

Probability that two classifiers make the same prediction given that
one of them is in error.

φi ,j = P(f̂i (x) = f̂j(x)|f̂i (x) 6= f (x) ∨ f̂j(x) 6= f (x))

f̂A(x) 1 1 1 1 1 1 0 1

f̂B(x) 0 1 1 0 1 1 0 0

f (x) 0 0 0 1 0 1 1 0

φ 0 1 1 0 1 0 1 0

φA,B = 4/7
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The Error Correlation Metric

Measures the diversity between the predictions of two
algorithms;

High values of φ: low diversity, redundant classifiers: the same
type of errors

Low Values of φ: high diversity: different errors.

Is the correlated error a sufficient condition?
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Multiple Models

A simulation study:

Consider a decision problem with two equi-probable classes:
P(Class1) = P(Class2)

The number of classifiers in the ensemble varies between [3,
..., 25].

All classifiers have the same probability of error. Assume
Perror (Classifieri ) = {0.45; 0.5; 0.55}

Multiple Model: aggregate the predictions of individual classifiers

For each example

Each classifier predicts a class label.
Count the votes for each class
Predict the most voted class: uniform voting.
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Multiple Models: Simulation

Study how the error varies when varying
the number of classifiers in the ensemble.
Probability of error of each classifier:

P = 0.5 (random choice)
The error of the ensemble is
constant: 0.5

P > 0.5
The error of the ensemble increases
linearly with the number of
classifiers.

P < 0.5
The error of the ensemble
decreases linearly with the number
of classifiers.
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Another Necessary Condition

Necessary Condition

The error of the ensemble decreases, with respect to each
individual classifier, iif each individual classifier has a performance
better than a random choice.
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Multiple Models: Simulation

Assume an ensemble of 23 classifiers:

probability of error of each
classifier: 30%;

aggregation by uniform vote.

Given a test example:

the ensemble will be in error iif 12
or more classifiers are in error.

The probability of error in the
ensemble is given by the area under
the curve of a binomial distribution;

In this case this area is 0.026.

Much less than each individual
classifier
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Necessary Conditions

To achieve higher accuracy the models should be diverse and each
model must be quite accurate Ali & Pazzani 96

Necessary Conditions

Classifiers in the ensemble, should have:

performance better than random guess;

non-correlated errors;

errors in different regions of the instance space.
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Multiple Models

Combining Outputs

Voting Methods
Fusion of Classifiers
Model Applicability

Perturbing the set of training examples
Homogeneous Classifiers

Bagging
Boosting

Heterogeneous Classifiers

Cascading
Stacking

Perturbing the set of attributes

Perturbing test examples
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Combining Outputs

The Problem:

Given:

A set of base classifiers
A test example

Each base classifier classifies the test example.

How to combine the predictions?

Two Contexts:

Voting: each classifier predicts a single class
Example: class A;

Fusion: each classifier outputs a probability for each class
Example: (0.9, 0.1).
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Combining Outputs: voting

Uniform Vote:

count the votes in each class;
classify the test example in the most voted class.

Weighted Vote:

each vote is weighted by an a priori estimate of the quality of
the prediction;
sum the weights in each class;
classify the test example in the most weighted class.

Many more other rules ... (Borba count, etc)
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Combining Outputs: voting

Uniform Voting

Weighted Voting

18 / 77



Outline Motivation Combining Outputs Perturbing Training Examples Perturbing the attribute set Perturbing Test Examples Summary Bibliography

Pos and Cons of Voting Methods:

Advantages

Simplicity;

Applicable everywhere.

Disadvantages

Does not take into account the example to classify;

Does not make classifiers selection.
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Fusion of Classifiers

J. Kittler; Combining Classifiers: A theoretical framework, Pattern

Analysis and Applications, Vol. 1, No. 1

Fusion of m probabilistic classifiers in a problem with j classes:

Classifier1(x) = {p1
a , p

1
b, . . . , p

1
j }

Classifier2(x) = {p2
a , p

2
b, . . . , p

2
j }

Classifierm(x) = {pm
a , p

m
b , . . . , p

m
j }
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Fusion of Classifiers: Agregation Functions

J. Kittler; Combining Classifiers: A theoretical framework, Pattern

Analysis and Applications, Vol. 1, No. 1,

Problem: Fusion of m probabilistic classifiers in a problem with j
classes

Sum rule: Sj =
∑m

k=1 Pkj

Mean rule: Sj =
∑m

k=1
Pkj

m

Geometric mean rule: Sj = m
√∏m

k=1 Pkj

Product rule: Sj =
∏m

k=1 Pkj

Maximum rule: Sj = maxk Pkj

Minimum rule: Sj = mink Pkj

Classify the example in the class that maximizes Sj .
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Fusion of Classifiers

Sum rule: conservative, but widely used;

Product rule: more risky, but can produce better results;
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Model Applicability

Model applicability induction, Ortega, 95

Characterize the regions of the instance space where base
classifiers perform well.

For each base classifier
learn a meta-classifier that predicts these regions

For each query example

Select only those classifiers with positive performance in the
region of the query example.
Classify the query example by uniform vote between selected
classifiers
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Model Applicability Induction
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Model Applicability Induction

Learning the meta classifier

Input: Base Classifier φ, Training Set T0, Meta Classifier Φ.

Output: A meta-model for φ

Algorithm

Let T1 = {}

For each example {~x , y} of the training set T0

Let T ′ = T0 - {~x , y}
Learn a model M = φ(T ′)
ŷ = M(~x)
If (ŷ == y) Then T1 = T1U{~x ,+} Else T1 = T1U{~x ,−}

Output Φ(T1)
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Model Applicability Induction KNIME
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Model Applicability Induction KNIME
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MAI: Example

Meta Data (T1)

Positive Examples: those
correctly predicted by the
base classifier.

Negative Examples: those
wrongly predicted by the
base classifier.

Meta Model in the form of a
decision tree (can be any other
classifier)
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Model Applicability Induction

Advantages

The meta-classifier is defined in the instance space of the
original problem: it uses the some set of attributes

Select the set of base classifiers to use to classify a test
example: takes the test example into account.
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Using different distributions of examples

Bagging, L. Breiman 92

Boosting, R. Schapire and Y. Freund, 94
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Boostrap Aggregation - Bagging

Learning:

Obtain N replicas of the training set, with reposition;
All the samples with the same number of examples of the
training set;
Learn a classifier for each sample.

Testing

For each test example;
All classifiers classify the test example;
Predictions are aggregated by uniform vote.
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Bagging
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Bagging

Given a dataset D with n examples, bagging generates m new
training sets Di , each of size n′, by sampling from D uniformly and
with replacement.

By sampling with replacement, some observations may be
repeated in each Di .

When drawing with replacement n′ values out of a set of n
(different and equally likely), the expected number of unique
draws is 1− (1− 1

n )n

For large n, this probability is 1− 1/e, where e is the base of
natural logaritms

On average, each replica will contain 36.8% of duplicates
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Why Bagging Works ?

Choosing the majority vote over several classifiers reduces the
randomness associated with individual models.

Example: decision trees

Decision trees use greedy algorithms. The training set can
influence too much in:

The choice of attributes for splitting-tests;

The choice of cut points

36 / 77



Outline Motivation Combining Outputs Perturbing Training Examples Perturbing the attribute set Perturbing Test Examples Summary Bibliography

Why Bagging Works ?
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Bagging

Properties:

Requires unstable algorithms (greedy like)

Algorithms sensible to small perturbations of the training set;

Decision trees, Rule learners, Neural Networks, etc.

Easy to implement with any algorithm;

Easy to implement in parallel environments.

The bias-variance argument:

Error decreases due to reduction in the variance component.
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Random Forests

Breiman, Random Forests, MLJ 2001;

A variant of Bagging;

Repeat k times

Training set = Draw with replacement N examples;
Built a decision tree

Choose (without replacement) i features
Choose best of these i as the root of this (sub)tree

Do NOT prune

where N is the nr. of examples, F nr. of features, and i some
number << F .
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Boosting

Can a set of weak learners create a single strong learner?

A weak learner is defined to be a classifier which is only slightly
correlated with the true classification.

A strong learner is a classifier that is arbitrarily well-correlated with
the true classification.

Rob Schapire, Strength of Weak Learnability Journal of Machine
Learning Vol. 5, pages 197-227. 1990
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Boosting

Theoretical framework

Given:

A confidence level δ, so high as desired;
An error bound ε, so small as desired;

Is it possible to design an algorithm that with probability δ
generates an hypothesis with error ε for any distribution of
examples generated for a given problem?

Boosting is one of such algorithms!
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Boosting

Characteristics

Boosting is an iterative algorithm;

Associates a weight with each example;

The weight indicates the probability of the example being
select in a uniform sampling;
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Boosting

Base Algorithm

Input:

weak-learner algorithm that generates a classifier better than a
random guess;
Training set.

Initialize uniform weights of examples, sum equal to one;

For i in 1 ... N

Generate a classifier using the actual distribution of the
examples;
The weight of the examples misclassified increases;
The weight of the examples correctly classified decreases;

The classifiers generated in all iterations are aggregated using
weighted voting.
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Boosting: Example

44 / 77



Outline Motivation Combining Outputs Perturbing Training Examples Perturbing the attribute set Perturbing Test Examples Summary Bibliography

Boosting: Example
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Boosting: Example
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Boosting: Example
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Comparison between Bagging & Boosting

Bagging

Error reduction due to
reduction in Variance;
Effective with unstable
classifiers;
Not reported increase
of error;

Boosting

Error reduction due to
reduction in bias and
variance;
risky in problems with
noise (increase of the
error);
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XGBoost - Extreme Gradient Boosting Tree

Additive tree model: add new trees that complement the
already-built ones
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XGBoost: Learning

First tree:
e1 x1 y1

e2 x2 y2

. . .
en xn yn

h1:

Second tree:
e1 x1 y1 − h1(e1)
e2 x2 y2 − h1(e2)

. . .
en xn yn − h1(en)

h2:

Second tree:
e1 x1 y1 − h1(e1)− h2(e1)
e2 x2 y2 − h1(e2)− h2(e2)

. . .
en xn yn − h1(en)− h2(en)

h3:
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XGBoost - Extreme Gradient Boosting Tree

Response is the optimal linear combination of all decision trees
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XGBoost
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XGBoost vs lightGBT
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Gradient Boosting Algorithms

AdaBoost: short for Adaptive Boosting, is a machine learning
meta-algorithm formulated by Yoav Freund and Robert
Schapire, who won the 2003 Gödel Prize for their work.

LightGBM: Light Gradient Boosting Machine, is a free and
open source distributed gradient boosting framework for
machine learning originally developed by Microsoft. It is based
on decision tree algorithms.

CatBoost: CatBoost is a high-performance open source library
for gradient boosting on decision trees.

Gradient Boosted Trees: in Greedy Function Approximation:
A Gradient Boosting Machine by Jerome H. Friedman (1999).

XGBoost: Tianqi Chen; Carlos Guestrin (2016): XGBoost: A
Scalable Tree Boosting System.
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Stacking Generalization

Wolpert, Stacking Generalization, Neural Networks, Nr. 5, 1992

Layered Learning

The output of an ensemble of trained classifiers is used as input to
the next-layer of classifiers.

Stacked Generalization with 2 layers

Layer0

Data : is original training set;
Models : classifiers trained from the layer0 data;

Layer1

Data : the predictions of layer0 classifiers on layer0 data using
cross-validation;

Models : classifier trained from the layer1 data;
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Stacking Generalization

Learning Layer1 Model
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Stacking Generalization: Example

Base models: naive Bayes, neural net, decision tree, linear
discriminant (LDA);

layer1 model: decision tree layer1 model: LDA
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Analysis

Main Goal

Layer1 classifier search for the best bias between layer0 classifiers.

Stacking Generalization: when it works?, Ting & Witten, IJCAI-97,

Which Classifier for layer1?

Linear discriminant (LDA):
weighted vote of predictions of each base classifier.

Which Attributes for layer1?

Class probability distribution of base classifiers

Effectiveness

Stacking is effective in reduction of error’s bias component
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Cascade Generalization

Gama, Brazdil; Cascade Generalization, Machine Learning, 2000

Layered Learning: Sequential composition of classifiers,

A each layer:

Learn a classifier
Extend the training set with new attributes
The new attributes are the predictions of classifier learnt at
this layer
The new attributes might be:

The class label predicted by the classifier;
Class distribution given by each base classifier;
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Cascade Generalization

Sequential composition of a naive-Bayes and a Decision Tree:
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Cascade Generalization in KNIME
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How to Use?

Use algorithms with different bias-variance profiles

At the beginning of the sequence use low-variance algorithms

At the end of the sequence use low-bias algorithms
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Perturbing the attribute set

Training phase

Generate different training sets

using random samples on the set of attributes

Generate a classifier from each training set

Test Phase

Each classifier classifies the test example

Classify the example using uniform voting
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Perturbing the attribute set

Zijian Zheng: Naive Bayesian Classifier Committees. ECML 98

Vertical partitions

Applicable with classifiers
unstable with respect to
the set of attributes

k nearest-neighbors
Naive Bayes

Presence of redundant
attributes
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Dual Perturb & Combine

Approaches that use only a single model and delays at the
prediction stage the generation of multiple predictions by
perturbing the attribute vector corresponding to a test case.
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Dual Perturb & Combine

Geurts & Wehenkel Closed-form dual perturb and combine for tree-based
models. In Proc. of the 22nd international Conference on Machine
Learning, 2005

Only a single model is generated from the training set.

In the prediction phase, each test example is perturbed several
times.

To perturb a test example, white noise is added to the
attribute-values.
The predictive model makes a prediction for each perturbed
version of the test example.
The final prediction is obtained by aggregating the different
predictions.

Geurts presents evidence that this method is efficient in variance
reduction.
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Multiple Models in Weka
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Summary

Well designed ensembles of classifiers allow improve performance
over their individual elements.

Necessary Condictions

Variability between elements;

Low Error correlation;

Each individual classifier must be better than a random choice.
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Summary

General Methods

Voting Methods;

Fusion of Classifiers (probabilistic classifiers)

Perturbing the training examples:

Bootstrap Aggregation (Bagging)
Adaptive Boosting (AdaBoosting)

Perturbing the set of attributes

Perturbing the test examples

Using different classifiers:

Stacking Generalization
Cascade Generalization
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