Multiple Models

João Gama

LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt November 2020

Motivation

- 2 Combining Outputs
- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine

Outline

1 Motivation

2 Combining Outputs

- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- 4 Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine
- 6 Summary
- 7 Bibliography

Multiple Models

Different learning algorithms exploit:

- Different languages for representing generalizations of the examples;
- Explore different search spaces;
- Use different evaluation functions of the hypothesis;

Multiple Models

How to take advantage of these differences?

Would be possible to obtain an ensemble of classifiers with a performance better than each individual classifier?

Observation: There is no overall better algorithm.

- Experimental results from Statlog and Metal project;
- Theoretical Results: No free lunch theorems.

< ロ > < 同 > < 回 > < 回 >

A necessary condition

A necessary condition

An ensemble of classifiers improve over individual classifiers iif they disagree. *Hansen & Salamon - 1990*

How to measure the degree of disagreement?

The Error Correlation Metric

The Error Correlation Metric

Probability that two classifiers make the same prediction given that one of them is in error.

$$\phi_{i,j} = P(\hat{f}_i(x) = \hat{f}_j(x) | \hat{f}_i(x) \neq f(x) \lor \hat{f}_j(x) \neq f(x))$$

$\hat{f}_A(x)$	1	1	1	1	1	1	0	1
$\hat{f}_B(x)$	0	1	1	0	1	1	0	0
f(x)	0	0	0	1	0	1	1	0
ϕ	0	1	1	0	1	0	1	0

$$\phi_{A,B} = 4/7$$

イロト イヨト イヨト

The Error Correlation Metric

- Measures the diversity between the predictions of two algorithms;
- High values of ϕ : low diversity, redundant classifiers: the same type of errors
- Low Values of ϕ : high diversity: different errors.
- Is the correlated error a sufficient condition?

Multiple Models

A simulation study:

- Consider a decision problem with two equi-probable classes: $P(Class_1) = P(Class_2)$
- The number of classifiers in the ensemble varies between [3, ..., 25].
- All classifiers have the same probability of error. Assume $P_{error}(Classifier_i) = \{0.45; 0.5; 0.55\}$

Multiple Model: aggregate the predictions of individual classifiers

イロト イヨト イヨト

9/77

- For each example
 - Each classifier predicts a class label.
 - Count the votes for each class
 - Predict the most voted class: uniform voting.

Multiple Models: Simulation

Study how the error varies when varying the number of classifiers in the ensemble. Probability of error of each classifier:

- 0.7 0.5% 0.65 0.6 0.55 Error Rate 0.5 0.45 0.4 0.35 0.3 0 10 15 20 Nr. of Glassifiers
- *P* = 0.5 (random choice) The error of the ensemble is constant: 0.5
- *P* > 0.5

The error of the ensemble increases linearly with the number of classifiers.

 P < 0.5 The error of the ensemble decreases linearly with the number of classifiers.

イロト イヨト イヨト イヨト

Another Necessary Condition

Necessary Condition

The error of the ensemble decreases, with respect to each individual classifier, iif each individual classifier has a performance better than a random choice.

Multiple Models: Simulation

Assume an ensemble of 23 classifiers:

- probability of error of each classifier: 30%;
- aggregation by uniform vote.

Given a test example:

- the ensemble will be in error iif 12 or more classifiers are in error.
- The probability of error in the ensemble is given by the area under the curve of a binomial distribution;
- In this case this area is 0.026.
- Much less than each individual classifier

< ロ > < 同 > < 回 > < 回 >

Necessary Conditions

To achieve higher accuracy the models should be diverse and each model must be quite accurate Ali & Pazzani 96

Necessary Conditions

Classifiers in the ensemble, should have:

- performance better than random guess;
- non-correlated errors;
- errors in different regions of the instance space.

< ロ > < 同 > < 回 > < 回 >

14 / 77

Multiple Models

- Combining Outputs
 - Voting Methods
 - Fusion of Classifiers
 - Model Applicability
- Perturbing the set of training examples
 - Homogeneous Classifiers
 - Bagging
 - Boosting
 - Heterogeneous Classifiers
 - Cascading
 - Stacking
- Perturbing the set of attributes
- Perturbing test examples

Outline

Motivation

2 Combining Outputs

- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- 4 Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine
- 6 Summary
- 7 Bibliography

Combining Outputs

The Problem:

- Given:
 - A set of base classifiers
 - A test example
- Each base classifier classifies the test example.
- How to combine the predictions?

Two Contexts:

- Voting: each classifier predicts a single class Example: class A;
- Fusion: each classifier outputs a probability for each class Example: (0.9, 0.1).

イロト イヨト イヨト

16 / 77

Combining Outputs: voting

- Uniform Vote:
 - count the votes in each class;
 - classify the test example in the most voted class.
- Weighted Vote:
 - each vote is weighted by an *a priori* estimate of the quality of the prediction;
 - sum the weights in each class;
 - classify the test example in the most weighted class.
- Many more other rules ... (Borba count, etc)

Combining Outputs: voting

18 / 77

Pos and Cons of Voting Methods:

Advantages

- Simplicity;
- Applicable everywhere.

Disadvantages

- Does not take into account the example to classify;
- Does not make classifiers selection.

Fusion of Classifiers

J. Kittler; Combining Classifiers: A theoretical framework, Pattern Analysis and Applications, Vol. 1, No. 1 Fusion of m probabilistic classifiers in a problem with j classes:

$$Classifier_1(x) = \{p_a^1, p_b^1, \dots, p_j^1\}$$

 $Classifier_2(x) = \{p_a^2, p_b^2, \dots, p_j^2\}$

$$Classifier_m(x) = \{p_a^m, p_b^m, \dots, p_j^m\}$$

Fusion of Classifiers: Agregation Functions

J. Kittler; Combining Classifiers: A theoretical framework, Pattern Analysis and Applications, Vol. 1, No. 1,

Problem: Fusion of m probabilistic classifiers in a problem with j classes

• Sum rule:
$$S_j = \sum_{k=1}^m P_{kj}$$

• Mean rule:
$$S_j = \sum_{k=1}^m \frac{P_{kj}}{m}$$

- Geometric mean rule: $S_j = \sqrt[m]{\prod_{k=1}^m P_{kj}}$
- Product rule: $S_j = \prod_{k=1}^m P_{kj}$
- Maximum rule: $S_j = \max_k P_{kj}$
- Minimum rule: $S_j = \min_k P_{kj}$

Classify the example in the class that maximizes S_i .

イロト イヨト イヨト

Fusion of Classifiers

- Sum rule: conservative, but widely used;
- Product rule: more risky, but can produce better results;

Model Applicability

Model applicability induction, Ortega, 95

- Characterize the regions of the instance space where base classifiers perform well.
- For each base classifier learn a meta-classifier that predicts these regions
- For each query example
 - Select only those classifiers with positive performance in the region of the query example.
 - Classify the query example by uniform vote between selected classifiers

イロト イヨト イヨト

23 / 77

Model Applicability Induction

Model Applicability Induction

Learning the meta classifier

- Input: Base Classifier ϕ , Training Set T_0 , Meta Classifier Φ .
- Output: A meta-model for ϕ

Algorithm

• Let
$$T_1 = \{\}$$

• For each example $\{\vec{x}, y\}$ of the training set T_0

• Let
$$T' = T_0 - \{\vec{x}, y\}$$

• Learn a model $M = \phi(T')$

•
$$\hat{y} = M(\vec{x})$$

• If $(\hat{y} == y)$ Then $T_1 = T_1 U\{\vec{x}, +\}$ Else $T_1 = T_1 U\{\vec{x}, -\}$

25 / 77

Output Φ(*T*₁)

Decision

Model Applicability Induction KNIME

File Rea	der C	oss Validation	Column Comparator	Column Filter	Tree Learner
	Þ	⊸	~_ ?	> <mark></mark> >	
Node) 1	Node 2	Node 5	Node 6	Node 7
🛕 Dialog - 4:5	- Column Compara	itor			
File					
Column and C	perator				
Column left:	S Col4	•	Operator: == 🗸	Column right:	S Prediction (DecTree) -
Replacement	Method				
	Operator result 'true	USER_DEFINED	•	Tag: Sim	
	Operator result 'false	: USER_DEFINED	-	Tag: Nac	
New Column					
			Name: compare_result		
				ОК	Apply Cancel
				< □	

Model Applicability Induction KNIME

MAI: Example

```
sunny, 85, 85, false,+
sunny, 80, 90, true, +
overcast, 83, 78, false,+
rain, 70, 96, false, -
rain, 68, 80, false, +
rain, 65, 70, true, -
overcast, 64, 65, true,+
sunny, 72, 95, false, -
sunny, 69, 70, false,+
rain, 75, 80, false, -
sunny, 75, 70, true, +
overcast, 72, 90, true,+
overcast, 81, 75, false,-
rain, 71, 80, true, +
Decision Tree:
windy = true: + (6.0/1.0)
windu = false:
    humidity <= 90 : + (6.0/2.0)
    humidity > 90 : - (2.0)
```

Meta Data (T_1)

- Positive Examples: those correctly predicted by the base classifier.
- Negative Examples: those wrongly predicted by the base classifier.

Meta Model in the form of a decision tree (can be any other classifier)

< ロ > < 同 > < 回 > < 回 >

28 / 77

Model Applicability Induction

Advantages

- The meta-classifier is defined in the instance space of the original problem: it uses the some set of attributes
- Select the set of base classifiers to use to classify a test example: takes the test example into account.

Outline

2 Combining Outputs

- 3 Perturbing Training Examples
 - Homogeneous Classifiers
 - Heterogeneous Classifiers
- Perturbing the attribute set
- Perturbing Test Examples
 Dual Perturb & Combine
- 6 Summary
- 7 Bibliography

Outline

Motivation

2 Combining Outputs

- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- 4 Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine
- 6 Summary
- 7 Bibliography

Using different distributions of examples

- Bagging, L. Breiman 92
- Boosting, R. Schapire and Y. Freund, 94

Boostrap Aggregation - Bagging

• Learning:

- Obtain N replicas of the training set, with reposition;
- All the samples with the same number of examples of the training set;
- Learn a classifier for each sample.
- Testing
 - For each test example;
 - All classifiers classify the test example;
 - Predictions are aggregated by uniform vote.

Bagging

• Learning:

Test

Bagging

Given a dataset D with n examples, bagging generates m new training sets D_i , each of size n', by sampling from D uniformly and with replacement.

- By sampling with replacement, some observations may be repeated in each D_i .
- When drawing with replacement n' values out of a set of n (different and equally likely), the expected number of unique draws is $1 (1 \frac{1}{n})^n$
- For large *n*, this probability is 1 1/e, where *e* is the base of natural logaritms
- On average, each replica will contain 36.8% of duplicates

Why Bagging Works ?

Choosing the majority vote over several classifiers reduces the randomness associated with individual models.

Example: decision trees

Decision trees use greedy algorithms. The training set can influence too much in:

- The choice of attributes for splitting-tests;
- The choice of *cut_points*

Why Bagging Works ?

Bagging

Properties:

- Requires unstable algorithms (greedy like)
- Algorithms sensible to small perturbations of the training set;
 - Decision trees, Rule learners, Neural Networks, etc.
- Easy to implement with any algorithm;
- Easy to implement in parallel environments.

The bias-variance argument:

Error decreases due to reduction in the variance component.

Random Forests

Breiman, Random Forests, MLJ 2001;

A variant of Bagging;

- Repeat k times
 - Training set = Draw with replacement N examples;
 - Built a decision tree
 - Choose (without replacement) *i* features
 - Choose best of these i as the root of this (sub)tree
 - Do NOT prune

where N is the nr. of examples, F nr. of features, and i some number << F.

Boosting

- Can a set of weak learners create a single strong learner?
- A weak learner is defined to be a classifier which is only slightly correlated with the true classification.
- A strong learner is a classifier that is arbitrarily well-correlated with the true classification.

Rob Schapire, *Strength of Weak Learnability* Journal of Machine Learning Vol. 5, pages 197-227. 1990

Boosting

Theoretical framework

- Given:
 - A confidence level δ , so high as desired;
 - An error bound ϵ , so small as desired;
- Is it possible to design an algorithm that with probability δ generates an hypothesis with error ϵ for any distribution of examples generated for a given problem?

Boosting is one of such algorithms!

Boosting

Characteristics

- Boosting is an iterative algorithm;
- Associates a weight with each example;
- The weight indicates the probability of the example being select in a uniform sampling;

Boosting

Base Algorithm

- Input:
 - *weak-learner* algorithm that generates a classifier better than a random guess;
 - Training set.
- Initialize uniform weights of examples, sum equal to one;
- For i in 1 ... N
 - Generate a classifier using the actual distribution of the examples;
 - The weight of the examples misclassified increases;
 - The weight of the examples correctly classified decreases;
- The classifiers generated in all iterations are aggregated using weighted voting.

イロト イヨト イヨト

Boosting: Example

Weak learner - generate an hyper-plane perpendicular to one of the axis

Boosting: Example

Weak learner - generate an hyper-plane perpendicular to one of the axis

Training set

イロト イタト イミト イミト ミ シ へで 45/77

Boosting: Example

Weak learner - generate an hyper-plane perpendicular to one of the axis

Boosting: Example

Weak learner - generate an hyper-plane perpendicular to one of the axis

≣ 4

イロト イヨト イヨト

Comparison between Bagging & Boosting

- Bagging
 - Error reduction due to reduction in Variance;
 - Effective with unstable classifiers;
 - Not reported increase of error;
- Boosting
 - Error reduction due to reduction in bias and variance;
 - risky in problems with noise (increase of the error);

< ロ > < 同 > < 回 > < 回 >

XGBoost - Extreme Gradient Boosting Tree

 Additive tree model: add new trees that complement the already-built ones

< ロ > < 同 > < 三 > < 三 >

XGBoost: Learning

First tree:	Second tree:	Second tree:
$e_1 x_1 y_1$	e_1 × ₁ $y_1 - h_1(e_1)$	$e_1 x_1 y_1 - h_1(e_1) - h_2(e_1)$
<i>e</i> ₂ x ₂ <i>y</i> ₂	e_2 x_2 $y_2 - h_1(e_2)$	$e_2 x_2 y_2 - h_1(e_2) - h_2(e_2)$
••••		
$e_n \times_n y_n$	$e_n x_n y_n - h_1(e_n)$	e_n x_n $y_n - h_1(e_n) - h_2(e_n)$
h1:		ha:

XGBoost - Extreme Gradient Boosting Tree

• Response is the optimal linear combination of all decision trees

XGBoost

XGBoost vs lightGBT

Gradient Boosting Algorithms

- AdaBoost: short for Adaptive Boosting, is a machine learning meta-algorithm formulated by Yoav Freund and Robert Schapire, who won the 2003 Gödel Prize for their work.
- LightGBM: Light Gradient Boosting Machine, is a free and open source distributed gradient boosting framework for machine learning originally developed by Microsoft. It is based on decision tree algorithms.
- CatBoost: CatBoost is a high-performance open source library for gradient boosting on decision trees.
- Gradient Boosted Trees: in *Greedy Function Approximation:* A Gradient Boosting Machine by Jerome H. Friedman (1999).
- XGBoost: Tianqi Chen; Carlos Guestrin (2016): XGBoost: A Scalable Tree Boosting System.

< ロ > < 同 > < 回 > < 回 >

Outline

- Motivation
- 2 Combining Outputs
- Perturbing Training Examples
 Homogeneous Classifiers
 - Heterogeneous Classifiers
- ④ Perturbing the attribute set
- Perturbing Test Examples
 Dual Perturb & Combine
- 6 Summary
- 7 Bibliography

Stacking Generalization

Wolpert, Stacking Generalization, Neural Networks, Nr. 5, 1992

Layered Learning

The output of an ensemble of trained classifiers is used as input to the next-layer of classifiers.

Stacked Generalization with 2 layers

• Layer₀

Data : is original training set;

Models : classifiers trained from the *layer*₀ data;

Layer₁

Data : the predictions of *layer*₀ classifiers on *layer*₀ data using cross-validation;

Models : classifier trained from the layer1 data;

< ロ > < 同 > < 回 > < 回 >

Stacking Generalization

Learning Layer1 Model

Stacking Generalization: Example

Base models: naive Bayes, neural net, decision tree, linear discriminant (LDA);


```
layer<sub>1</sub> model: LDA
> lda(observed~.,df)
Call:
lda.formula(observed ~ ., data = df)
Prior probabilities of groups:
0.51.0.49
Group means:
   discrim2
               nbayes2
                           nnet2
                                    dtree2
1 0.4509804 0.5686275 0.5098039 0.3725490
2 0.4285714 0.4693878 0.4489796 0.4693878
Coefficients of linear discriminants:
                 LD1
discrim2 -0.3424098
nbaves2
         -1.3950698
nnet2
          -1.0185849
          1.0547212
dtree2
```

イロト イヨト イヨト

Analysis

Main Goal

Layer₁ classifier search for the best bias between layer₀ classifiers.

Stacking Generalization: when it works?, Ting & Witten, IJCAI-97,

- Which Classifier for *layer*₁?
 - Linear discriminant (LDA): weighted vote of predictions of each base classifier.
- Which Attributes for *layer*₁?
 - Class probability distribution of base classifiers

Effectiveness

Stacking is effective in reduction of error's bias component

イロト イヨト イヨト

Cascade Generalization

Gama, Brazdil; Cascade Generalization, Machine Learning, 2000

- Layered Learning: Sequential composition of classifiers,
- A each layer:
 - Learn a classifier
 - Extend the training set with new attributes
 - The new attributes are the predictions of classifier learnt at this layer
 - The new attributes might be:
 - The class label predicted by the classifier;
 - Class distribution given by each base classifier;

Cascade Generalization

Sequential composition of a naive-Bayes and a Decision Tree:

Dataset Original	Dataset Extendido	
3,4,3,4,B 4,1,4,1,B 4,2,2,1,L 5,2,5,3,R 2,5,4,4,R 2,3,4,3,R 5,1,4,5,R 4,3,2,5,L 3,3,2,5,R 1,3,4,5,R	3,4,3,4,0,461183,0,077635,0,461183,B 4,1,4,1,0,413818,0,172365,0,413818,B 4,2,2,1,0,838750,0,089446,0,071804,L 5,2,5,3,0,307441,0,089143,0,603416,R 2,5,4,4,0,28368,0,0,104362,0,611952,R 2,3,4,3,0,213796,0,075340,0.851744,R 5,1,4,5,0,072916,0,075340,0.851744,R 4,3,2,5,0,505602,0,094848,0,399550,L 3,3,2,5,0,391624,0,080813,0,527563,R 1,3,4,5,0,030005,0,043305,0,926691,R	
	Arvore de Decisao (dataset extendido)	
	File stem <balnew> Read 625 cases (7 attributes) from balnew.data Decision Tree: p3 > 0.471812 : R (288.0) p3 <= 0.471812 : p1 <= 0.471812 : B (49.0) p1 > 0.471812 : L (288.0)</balnew>	
	ΠΕΕ 3ανευ	INSIGNATION LA

Cascade Generalization in KNIME

How to Use?

- Use algorithms with different bias-variance profiles
- At the beginning of the sequence use low-variance algorithms
- At the end of the sequence use low-bias algorithms

Outline

Motivation

2 Combining Outputs

- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine
- 6 Summary
- 7 Bibliography

Perturbing the attribute set

Training phase

- Generate different training sets
- using random samples on the set of attributes
- Generate a classifier from each training set

Test Phase

- Each classifier classifies the test example
- Classify the example using uniform voting

Perturbing the attribute set

Zijian Zheng: Naive Bayesian Classifier Committees. ECML 98

- Vertical partitions
- Applicable with classifiers unstable with respect to the set of attributes
 - k nearest-neighbors
 - Naive Bayes
- Presence of redundant attributes

Outline

Motivation

- 2 Combining Outputs
- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- Perturbing the attribute set
- Perturbing Test ExamplesDual Perturb & Combine
- 6 Summary
- 7 Bibliography

Outline

Motivation

- 2 Combining Outputs
- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- 4 Perturbing the attribute set
- Perturbing Test ExamplesDual Perturb & Combine
- 6 Summary
- 7 Bibliography

Dual Perturb & Combine

Approaches that use only a single model and delays at the prediction stage the generation of multiple predictions by perturbing the attribute vector corresponding to a test case.

Dual Perturb & Combine

Geurts & Wehenkel *Closed-form dual perturb and combine for tree-based models*. In Proc. of the 22nd international Conference on Machine Learning, 2005

- Only a single model is generated from the training set.
- In the prediction phase, each test example is perturbed several times.
 - To perturb a test example, white noise is added to the attribute-values.
 - The predictive model makes a prediction for each perturbed version of the test example.
 - The final prediction is obtained by aggregating the different predictions.
- Geurts presents evidence that this method is efficient in variance reduction.

イロト イヨト イヨト

Multiple Models in Weka

Program Applications Tools Visualization Windows He	lp
🕮 Explorer	
Preprocess Classify Cluster Associate Select attributes	Vi
Classifier	
🖻 🕌 meta	
AdaBoostM1	
AdditiveRegression	
AttributeSelectedClassifier	
Bagging	nl
ClassificationViaClustering	
ClassificationViaRegression	
CostSensitiveClassifier	
CVParameterSelection	
• Dagging	
Decorate	
- • END -	
C EnsembleSelection	
FilteredClassifier	
Grading	
GridSearch	
 LogitBoost 	
MetaCost	J
MultiBoostAB	
MultiClassClassifier	
- MultiScheme	
OrdinalClassClassifier	
RacedIncrementalLogitBoost	
RandomCommittee	
RandomSubSpace	
RegressionByDiscretization	
Stacking	
StackingC	
ThresholdSelector	J
• Vote	
🛛 👘 nestedDichotomies	
□ <u>• • • • • • • • • • • • • • • • • • •</u>	9
Filter Remove filter Close	

イロト イヨト イヨト イヨト

Outline

Motivation

2 Combining Outputs

- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine

6 Summary

Bibliography

Summary

Well designed ensembles of classifiers allow improve performance over their individual elements.

Necessary Condictions

- Variability between elements;
- Low Error correlation;
- Each individual classifier must be better than a random choice.

Summary

General Methods

- Voting Methods;
- Fusion of Classifiers (probabilistic classifiers)
- Perturbing the training examples:
 - Bootstrap Aggregation (Bagging)
 - Adaptive Boosting (AdaBoosting)
- Perturbing the set of attributes
- Perturbing the test examples
- Using different classifiers:
 - Stacking Generalization
 - Cascade Generalization

 Outline
 Motivation
 Combining Outputs
 Perturbing Training Examples
 Perturbing the attribute set
 F

Outline

Motivation

2 Combining Outputs

- Perturbing Training Examples
 Homogeneous Classifiers
 Heterogeneous Classifiers
- 4 Perturbing the attribute set
- 5 Perturbing Test Examples• Dual Perturb & Combine
- 6 Summary

7 Bibliography

Bibliography

- Ali and Pazzani, Error Reduction through learning multiple descriptions, Machine Learning,23, 1996
- Breiman, L. Stacking Predictors, Machine Learning, 25, 1997
- Breiman, L, Bagging Predictors, Machine Learning, 24, 1997
- Bauer, Kohavi An empirical comparison of voting classification algorithms: Bagging, Boosting and Variants, Machine Learning, 36, 1999
- Dietterich, T., Machine Learning Research-Four current directions, AI Magazine, 98
- Freund, Y. and Schapire Experiments with a new boosting algorithm, ICML96
- Gama, J. Combining Classifiers by Constructive Induction, ECML98
- Gama, J. Cascade Generalization, Machine Learning, 2000
- Kohavi, R., Kunz, C., Option Trees with majority votes, ICML97
- Quinlan, R., Bagging, Boosting and C4.5, AAAI96
- Ting, K.; Witten, I, Stacked Generalization: when it works, IJCAI, 1997
- Wolpert, D. Stacked Generalization, Neural Networks, N.5

A D > A D > A D > A D >

Would you like to learn more? Wait for ECDII ...

