
Semantic
Web
and
Linked Data

Liliana Ferreira

2022/23

Class 8: Learning Objectives

• Introduction to of ontologies;

• Types of ontologies;

• The OWL ontology language

• Logic and Inference;

• The Protégé open-source tool.

Remember…

• Next class:

• Practical Work Check Point II

• Short presentation to the class including context and motivation,
identified requirements, existing solutions/approaches for the same
problem, knowledge sources to be used and architecture of the
solution (byLaws).

Introduction

RDF(S) too weak to describe resources in sufficient detail

• No localized range and domain constraints.

• E.g., cannot state that the range of hasChild is person when applied to persons
and elephant when applied to elephants

• No combination of classes with union, intersection, and complement.

• No existence/cardinality constraints.

• E.g., cannot state that all persons have a mother that is also a person, or that
persons have exactly 2 parents

• No transitive, inverse or symmetrical properties.

• E.g., cannot state that isPartOf is a transitive property, that hasPart is the inverse
of isPartOf or that touches is symmetrical

Introduction

• Difficult to provide reasoning support for predicates beyond the RDF

and RDFS namespace as there is not formal foundation on which you

can build those.

Remember…

• Why do we need reasoning?
– Ensure that a knowledge base (KB) is:

• Meaningful - all named classes can have instances

• Correct - captured intuitions of domain experts

• Minimally redundant - no unintended synonyms

• Answer queries over ontology classes and instances, e.g.:
– Find more general and specific classes

– Retrieve individuals or tuples matching a given query

Ontologies

Ontologies are a popular research topic in Artificial Intelligence (AI), e.g.:

• Knowledge Engineering, Natural Language Processing, Intelligent Information
Integration and Multi-agent systems.

By attaching information to data that describe its contents and meaning,
web resources can be used by machines.

The data can be used not just for display purposes, but also for
automation, integration and reuse of data across various applications.

What is an ontology?

Studer(98): Formal, explicit specification of a shared conceptualization

Machine

readable

Concepts, properties,

functions, axioms

are explicitly defined

Consensual

knowledge

Abstract model of

some domain

Ontology

What exists in a domain and how they relate with each other.

• In general, an ontology formally describes a domain of discourse.

• An ontology consists of a finite list of terms (i.e. concepts) and the
relationships between the terms (i.e. properties).

• The terms denote important concepts (classes of objects) of the domain.

• For example, in a university setting: staff members, students, courses,
modules, lecture theatres, and schools are some important concepts.

For what is an ontology good for?

Enable knowledge sharing and knowledge reuse.

• Ontologies capture general knowledge about a domain that is changing rarely
and specify concepts and relations about which knowledge is to be
accumulated and processed.

• For information systems or for the Internet, ontologies can be used to organize
keywords and database concepts by capturing the semantic relationships
among the keywords or among the tables and fields in a database.

Why do I need to develop an ontology?

1. To provide more precise definition to resources and make them more suitable to
machine processing;

2. To define explicit assumptions for a domain:

a) Easier to exchange domain assumptions;

b) Flexible to change/update the assumptions;

c) Easier to interpret and update legacy data.

3. To separate domain knowledge from operational knowledge

a) Re-use domain and operational knowledge separately;

4. A common reference to define concepts and relationships between concepts
and other axioms in a domain;

5. To share a consistent understanding of a domain.

Criteria for Introducing Ontologies

• Large amounts of data

• Data available on the Web

• Data acquired or generated by new techniques

• Complex data structures

• Inheritance, containment and other hierarchies

• Many relationships

• Diverse sources

• Many legacy systems

• Sources on the Web using different formats

• Requirement for formal proofs

• Contracts and policy enforcement

Terminological Systems

Terminological systems can be seen as basic examples of ontologies; for example:

Terminologies list of terms referring to concepts in a particular domain;

Thesaurus terms are ordered alphabetically and concepts maybe
described by synonymous terms;

Vocabulary concepts are defined in formal or free text form;

Classification concepts are organized using generic (i.e. is_a)
relationships;

Coding systems codes designate concepts.

Types of ontologies

A common way to classify ontologies is depending on their level of generality:

• Domain ontologies contain knowledge that is valid for a particular type of domain (e.g. electronic,
medical, mechanic);

• Meta data ontologies provide a vocabulary for describing the content of information sources in the
World Wide Web;

• Generic or top-level ontologies (aka common-sense ontologies) capture general knowledge. The
conceptualizations defined here are valid across several domains.

• Method and task ontologies can provide terms for particular tasks or problem-solving methods. They
are used for reasoning on domain knowledge.

• Concepts(classes) + their hierarchy

• Concept properties (slots/attributes) + their hierarchy

• Property restrictions (type, cardinality, domain …)

• Relations between concepts (disjoint, equality …)

• Instances

Ontology Elements

Ontology Languages

• Ontologies are formal theories about a certain domain of discourse and
therefore require a formal logical language to express them.

• Languages for defining ontologies are syntactically and semantically
rich languages, e.g. richer than common approaches for databases.

The OWL Language

• Web Ontology Language (OWL) is the W3C recommendation for

representing ontologies on the Web;

• OWL is a semantic markup language for defining, publishing and sharing

ontologies in the World Wide Web;

• OWL contains specific constructs to represent the domain and range of

properties, subclass and other axioms and constraints on the values that

can be assigned to the property of an object;

• OWL is based on Description Logics knowledge representation formalism.

The OWL Language

• OWL is a W3C Recommendation

• OWL was published in 2004

• OWL 2 was published in 2012

• Motivations:

• A well-defined syntax

• A formal semantics

• Efficient reasoning support

OWL and Description Logic

• OWL (DL) benefits from extensive work on DL research:

• Well defined semantics

• Formal properties (describing complexity, and providing decidability)

• Known reasoning algorithms

• Implemented systems

OWL “flavors”

• W3C’s Web Ontology Working Group defined OWL as three

different sublanguages:

– OWL Full

– OWL DL

– OWL Lite

• Each sublanguage geared toward fulfilling different aspects of

requirements

OWL DL

• OWL DL (Description Logics)

• Based on FOL semantics

• OWL DL permits efficient reasoning support

• The most expressive decidable OWL sub-language

• But we lose full compatibility with RDF:

• Every legal OWL DL document is a legal RDF document.

• Not every RDF document is a legal OWL DL document.

OWL on one Slide

• Symmetric: if P(x, y) then P(y, x)

• Transitive: if P(x,y) and P(y,z) then P(x, z)

• Functional: if P(x,y) and P(x,z) then y=z

• InverseOf: if P1(x,y) then P2(y,x)

• InverseFunctional: if P(y,x) and P(z,x) then y=z

• allValuesFrom: P(x,y) and y=allValuesFrom(C)

• someValuesFrom: P(x,y) and

y=someValuesFrom(C)

• hasValue: P(x,y) and y=hasValue(v)

• cardinality: cardinality(P) = N

• minCardinality: minCardinality(P) = N

• maxCardinality: maxCardinality(P) = N

• equivalentProperty: P1 = P2

• intersectionOf: C = intersectionOf(C1, C2, …)

• unionOf: C = unionOf(C1, C2, …)

• complementOf: C = complementOf(C1)

• oneOf: C = one of(v1, v2, …)

• equivalentClass: C1 = C2

• disjointWith: C1 != C2

• sameIndividualAs: I1 = I2

• differentFrom: I1 != I2

• AllDifferent: I1 != I2, I1 != I3, I2 != I3, …

• Thing: I1, I2, …

Caption:
• Properties are indicated by: P,

P1, P2, etc

• Specific classes are indicated

by: x, y, z

• Generic classes are indicated

by: C, C1, C2

• Values are indicated by: v, v1,

v2

• Instance documents are

indicated by: I1, I2, I3, etc.

• A number is indicated by: N

• P(x,y) is read as: “property P

relates x to y”

An example

• Woman ≡ Person ⊓ Female

• Man ≡ Person ⊓ Woman

• Mother ≡ Woman ⊓ hasChild.Person

• Father ≡ Man ⊓ hasChild.Person

• Parent ≡ Father ⊔ Mother

• Grandmother ≡ Mother ⊓ hasChild.Parent

We can further infer (though not explicitly stated):

→ Grandmother ⊑ Person

Grandmother ⊑ Man ⊔ Woman

etc.

A Sample Ontology
African Wildlife Ontology (AWO)

• AWO contains knowledge about wildlife:

• Giraffes eat leaves and twigs;

• Giraffes are herbivores;

• Hervibores are animals, and so on.

A Sample Ontology
African Wildlife Ontology (AWO)

• A mathematician may prefer to represent such knowledge with first order
predicate logic (FOL).

• Example:

this states that …

A Sample Ontology
African Wildlife Ontology (AWO)

• A mathematician may prefer to represent such knowledge with first order
predicate logic (FOL).

• Example:

this states that “all lions eat herbivores, and they also eat some impalas”.

A Sample Ontology
African Wildlife Ontology (AWO)

One can represent the same knowledge also in other logic languages.

• Example, in Description Logic language:

A Sample Ontology
African Wildlife Ontology (AWO)

• A domain expert will typically prefer a more user-friendly rendering, such as
an automatically generated (pseudo-)natural language rendering, e.g.:

where the first “∀” in first equation is verbalized as each and the second one as
only, the “∧” as and, and the “∃” as some.

A Sample Ontology
African Wildlife Ontology (AWO)

In Protégé tool:

Example Ontology (Protégé)

OWL
Simple Classes and Individuals

• An important use of an ontology will depend on the ability to reason about
individuals.

• This requires a mechanism to describe the classes that individuals belong to and the
properties that they inherit by virtue of class membership.

• We can always assert specific properties about individuals, but much of the power of
ontologies comes from class-based reasoning.

• Sometimes we want to emphasize the distinction between a class as an
object and a class as a set containing elements.

• The set of individuals that are members of a class are called the extension of the class.

Simple Named Classes

• Every individual in the OWL world is a member of the class owl:Thing.

• Named classes

• Example: <owl:Class rdf:ID=“Staff"/>

<owl:Class rdf:ID=“Researcher"/>

<owl:Class rdf:ID=“Academic"/>

• The fundamental taxonomic constructor for classes is rdfs:subClassOf.

• Example: <owl:Class rdf:ID=“Researcher">

<rdfs:subClassOf rdf:resource="#Staff" />

...

</owl:Class>

Individuals

• Individuals enable us to describe members of a class.

• An individual is minimally introduced by declaring it to be a member of a class.

<owl:Thing rdf:ID=“Postdoc" />

<owl:Thing rdf:about="#Postdoc">

<rdf:type rdf:resource="#Researcher"/>

…

</owl:Thing>

• rdf:type is an RDF property that ties an individual to a class of which it is a member.

Simple Properties

• Properties allow asserting general facts about the members of classes
and defining specific facts about individuals.

• A property is a binary relation.

• Two types of properties are distinguished:

• datatype properties, relations between instances of classes and RDF literals and
XML Schema datatypes

• object properties, relations between instances of two classes.

36

Simple Properties- Example

<owl:ObjectProperty rdf:ID=“hasSupervisor">

<rdfs:domain rdf:resource="# PhDStudent "/>

<rdfs:range rdf:resource="#Academic"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“demonstratedBy">

<rdfs:domain rdf:resource="#Lab" />

<rdfs:range rdf:resource="#PhDStudent" />

</owl:ObjectProperty>

37

Simple Properties- Example

Using DatatypeProperty

<owl:Class rdf:ID=“hasName" />

<owl:DatatypeProperty rdf:ID=“nameValue">

<rdfs:domain rdf:resource="#PhDStudent" />

<rdfs:range rdf:resource="&xsd; string"/>

</owl:DatatypeProperty>

38

Simple Properties- Constraints

<owl:Class rdf:ID=“PhDStudent">

<rdfs:subClassOf rdf:resource=“#DeptMembers"/> <rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSupervisor"/>

<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

...

</owl:Class>

Ontology design
Philosophical principles

1. Clarity: understandable not only for machines but also for humans.

2. Coherence: consistency of formal and informal layers of ontology (axioms vs.
natural language documentation and labels).

3. Extendibility

4. Minimal coding bias: specification of ontologies should remain at the knowledge
level (if it is possible) without depending on a particular symbol-level encoding.

5. Minimal ontological commitment: defining only those terms that are essential to
the communication of knowledge consistent theory.

6. Proper sub-concept taxonomies

Ontology design
Technical principles

1. Define and use of naming conventions

• Capitalisation: it is a common convention to begin concept names with capital, instance
and property names with non-capital letters.

1. Delimiters: common conventions are using space or “-” or writing names in CamelCase
which eliminates the need for delimiters.

2. Singular or plural: it is common to use the singular form in the concept names.

2. Scoping the ontology

1. Introducing new entities: introduce a new concept only if it is significant for the
problem domain.

Ontology design principles
Technical principles (cont.)

3. Optimal number of sub-concepts;

• New concept or property value - concept or instance?

• If it is meaningful to speak of a “kind of X” in the target domain i.e. the entity
represents a set of something, make X a concept. Otherwise X should be an
instant.

4. Document your ontologies;

5. Represent disjoint and exhaustive knowledge explicitly.

Ontologies as
Part of a Solution
to Other Problems

Some examples

Deep Question Answering with Watson

• Watson is a sophisticated question answering engine that finds answers
to trivia/general knowledge questions for the Jeopardy! TV quiz.

• In the end, Watson did consistently outperform the human experts of the
game.

Deep Question Answering with Watson

Further Reading OWL

• Industry-scale Knowledge Graphs: Lessons and Challenges

https://queue.acm.org/detail.cfm?ref=rss&id=3332266

• Protégé Tutorials:

1. https://www.emse.fr/~zimmermann/Teaching/SemWeb/Practice/Protege
Tutorial.pdf

2. https://protege.stanford.edu/publications/ontology_development/ontolog
y101.pdf

https://queue.acm.org/detail.cfm?ref=rss&id=3332266
https://www.emse.fr/~zimmermann/Teaching/SemWeb/Practice/ProtegeTutorial.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

