Anuran species recognition using a hierarchical classification approach

Juan G. Colonna¹², João Gama², and Eduardo F. Nakamura¹

¹Federal University of Amazonas (UFAM), Institute of Computing (Icomp) ²Laboratory of Artificial Intelligence and Decision Support (LIAAD), INESC Tec

Getting more from family, genus and species of frogs

Introduction

- Anura is the name of an order of animals in the Amphibian class which lack a tail, this includes **frogs** and **toads**.

Why monitor populations of frogs?

 Frogs have a semipermeable skin → It makes them sensitive to environmental changes

Why monitor populations of frogs?

Hypothesis: Tracking the changes in the anuran populations can help us to determine ecological problems in early stages.

It involves several manual tasks!

Proposal

Signal processing (SP) + Wireless Sensor Networks (WSN) + Machine Learning

Advantages: It is Automatic, less intrusive and allows long term monitoring!

How to do that?

- 1) Pre-processing:
 - a) Filter: band-pass filter, wavelet decomposition, etc.
 - b) Segmentation: syllable-based approach (x_k)

How to do that?

- 1) Pre-processing:
 - a) Filter: band-pass filter, wavelet decomposition, etc.
 - b) Segmentation: syllable-based approach (x_k)
- 2) Feature Extraction: that maps $x_{k} \rightarrow c_{k}$
 - a) Mel-frequency cepstral coefficients (MFCCs)
 - b) Spectral centroid, Spectral bandwidth, Pitch, etc.

How to do that?

1) Pre-processing:

- a) Filter: band-pass filter, wavelet decomposition, etc.
- b) Segmentation: syllable-based approach (x_k)
- 2) Feature Extraction: that maps $x_k \rightarrow c_k$
 - a) Mel-frequency cepstral coefficients (MFCCs)
 - b) Spectral centroid, Spectral bandwidth, Pitch, etc.
- 3) Recognition: ML technique to classify $c_{\mu} \rightarrow ID$ (species ID)
 - a) Support Vector Machine
 - b) kNN
 - c) Tree, etc.

Segmentation and feature extraction

Segmentation and feature extraction

segmentation and feature extraction

Classification

Dataset with k samples (or syllables) composed of l coefficients and one label (s).

where j is the number of different species

Problem of this approach?

- The order Anura has the most extant species, with 6.500 members worldwide¹.
- Is it possible to train a flat classifier with 6.500 different labels?

1- http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.

Problem of this approach?

- The order Anura has the most extant species, with 6.500 members worldwide¹.
- It is possible to training a flat classifier with 6.500 different labels?
- In order to monitor a small region a subset of species should be sufficient. However, there could be many species, mainly in tropical regions.

1- http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.

Knowledge organization

Carl Linnaeus has defined a particular form of biological organization (taxonomy) in his work Systema Naturae (1735).

How to improve the classification using the taxonomy?

- The anura Order has 31 Families (approximately)
- These Families are divided into several genus
- And finally, these genus are divided in almost 6K species

How to improve the classification using the taxonomy?

- The anura Order has 31 Families (approximately)
- These Families are divided into several genus
- And finally, these genus are divided in almost 6K species

Hypothesis: the phylogenetic taxonomy may describe similar calls among species that belong to the same genus and family².

² B. Gingras and W. T. Fitch.

A three-parameter model for classifying anurans into four genera based on advertisement calls. The Journal of the Acoustical Society of America, 133(1):547–559, 2013.

A multi-label approach

- Building a new dataset incorporating the new labels:

Multi-label dataset =
$$\begin{bmatrix} \mathbf{c}_1 = [c_1, c_2, \dots, c_l], & s, & g, & f \\ \mathbf{c}_2 = [c_1, c_2, \dots, c_l], & s, & g, & f \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{c}_k = [c_1, c_2, \dots, c_l], & s_j, & g_i, & f_m \end{bmatrix}$$

where s, g and f are the labels of species, genus, and family respectively.

- Use the taxonomy relation of the labels to build a tree.

- Problem simplification:

- Problem simplification:

- Problem simplification:

Our dataset

Family	Gender	Species	s	\boldsymbol{k}
Leptodactylidae	Leptodactylus	Leptodactylus fuscus*	4	222
	Adenomera	Adenomera andreae*	8	496
		Adenomera hylaedactyla**	11	3049
Hylidae	Dendropsophus	Hyla minuta**	11	229
	Scinax	Scinax ruber**	5	96
	Osteocephalus	Osteocephalus oophagus*	3	96
	Hypsiboas	Hypsiboas cinerascens*	4	429
		Hypsiboas cordobae ⁺	4	702
Bufonidae	Rhinella	Rhinella granulosa*	5	135
Dendrobatidae	Ameerega	Ameerega trivittata**	5	544

- Indeed this is not a big-data dataset, but it is enough to prove our point.

Building our hierarchical classifier

This configuration allows us to simplify the problem, for instance: suppose that the first level decides in favor of the family *Bufonidae*. In this case there are no more splits in the tree, consequently it is not necessary to perform extra classifications to determine the species.

- A **kNN** was chosen as base classifier in each node (k=3).

- A **kNN** was chosen as base classifier in each node (k=3).
- A **One-against-One** was used to solve each classification task.

- A **kNN** was chosen as base classifier in each node (k=3).
- A One-against-One was used to solve each classification task.
- We adapted a **cross-validation procedure by specimen** (or individual) to test how well our method generalizes.

- A **kNN** was chosen as base classifier in each node (k=3).
- A One-against-One was used to solve each classification task.
- We adapted a **cross-validation procedure by specimen** (or individual) to test how well our method generalizes.
- A **Macro-accuracy** was used in evaluations to avoid an artificial increment of the Micro-accuracy due to the unbalanced number of samples in each class.

- A **kNN** was chosen as base classifier in each node (k=3).
- A One-against-One was used to solve each classification task.
- We adapted a **cross-validation procedure by specimen** (or individual) to test how well our method generalize.
- A Macro-accuracy was used in evaluations to avoid an artificially increment of the Micro-accuracy due to unbalanced number samples in each class.
- **Baseline** comparison (dummy classifier):
 - Micro-accuracy = 0.5083
 - Macro-accuracy = 0.10

Results of family level

- Macro-accuracy is the average of the accuracies in each class, M-acc=(0.31+0.89+0.94+0.90)/4=0.76
- Micro=0.89

Table 2: Confusion matrix of family level with kNN (k=3). Last row (Acc) is the accuracy of each column.

	Bufonidae	Dendrobatidae	Hylidae	Leptodactylidae
Bufonidae	43	0	21	71
Dendrobatidae	27	488	0	29
Hylidae	3	0	1465	84
Leptodactylidae	16	36	322	3393
Acc	0.31	0.89	0.94	0.90

Results of genus level

Macro-acc=0.60 and Micro=0.85

Table 3: Confusion matrix of gender level with kNN (k=3). Legend: (a) Adenomera, (b) Ameerega, (c) Dendropsophus, (d) Hypsiboas, (e) Leptodactylus, (f) Osteocephalus, (g) Rhinella, and (h) Scinax. Last row (Acc) is the accuracy of each column.

	a	b	с	d	е	f	g	h
a	3186	36	18	61	58	184	0	2
b	23	488	0	0	6	0	27	0
с	51	0	123	35	0	0	0	20
d	7	0	0	1117	0	6	0	1
e	15	0	20	14	134	21	16	2
f	7	0	0	48	4	34	3	0
g	8	0	0	9	63	0	43	12
h	15	0	50	11	0	0	0	20
Acc	0.89	0.89	0.53	0.98	0.60	0.35	0.31	0.20

Results of species level

Macro=0.60 and Micro=0.85

Table 4: Confusion matrix of species level with kNN (k=3). Legend: (a) Adenomera andreae, (b) Adenomera hylaedactyla, (c) Ameerega trivittata, (d) Hyla minuta, (e) Hypsiboas cinerascens, (f) Hypsiboas cordobae, (g) Leptodactylus fuscus, (h) Osteocephalus oophagus, (i) Rhinella granulosa, and (j) Scinax ruber. Last row (Acc) is the accuracy of each column.

	a	b	с	d	e	f	g	h	i	j
a	156	0	35	2	61	0	58	184	0	0
b	0	3030	1	16	0	0	0	0	0	2
с	23	0	488	0	0	0	6	0	27	0
d	3	48	0	123	3	32	0	0	0	20
e	1	6	0	0	415	0	0	6	0	1
f	0	0	0	0	0	702	0	0	0	0
g	1	14	0	20	0	14	134	21	16	2
h	7	0	0	0	48	0	4	34	3	0
i	8	0	0	0	6	3	63	0	43	12
j	0	15	0	50	9	2	0	0	0	20
Acc	0.31	0.99	0.89	0.53	0.96	1.00	0.60	0.35	0.31	0.20

Summary and conclusions

- Baseline comparison against a dummy classifier:
 - Micro gain = +35%
 - Macro gain = +50%
- From a classification point of view the families Bufo,
 Hyla and Lepto were the most similar in the feature space.
- The **Scinax** species was the most difficult to recognize.
- The hierarchical approach effectively **reduces the complexity** of problems maintaining an acceptable accuracy.

Summary and conclusions

- Baseline comparison against a dummy classifier:
 - Micro gain = +35%
 - Macro gain = +50%
- From a classification point of view the families Bufo,
 Hyla and Lepto were the most similar in the feature space.
- The **Scinax** species was the most difficult to recognize.
- The hierarchical approach effectively **reduces the complexity** of problems maintaining an acceptable accuracy.

Future work: Implement soft decision rules in the tree.

