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How do we learn?
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Novelty

I Novelty is a relative concept defined in the context of a
representation of our current knowledge

I Novelty Detection refers to the automatic identification of
unforeseen phenomena embed in a large amount of normal
data

I Specially useful when novel concepts represent abnormal or
unexpected conditions
I expensive to obtain abnormal examples
I probably impossible to simulate all possible abnormal

conditions
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Applications

I Intrusion Detection

I Fault Detection

I Fraud Detection

I Medical Diagnosis

I Spam Filter

I Text Classification
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One-Class Classification: Problem Definition

I Offline Phase
I Normal concept is composed by one class.
I All training examples belong to the normal class.

I Online Phase
I Examples not explained by the normal concept are labeled as

abnormal.
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One-Class Classification: Common Approaches

I Some techniques use:

I Artificial Neural Networks

I Support Vector Machines

I kNN based approaches

I Kernel based approaches

I Parzen windows
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One-Class Classification: Common Approaches - II

Autoencoders [Japkowicz, 1999]

I three layer network

I nr. of neurons in the output layer is equal to
the input layer

I the network is trained with backpropagation
to reproduce the input at the output layer

I difference between the input example and the
output:
I < threshold : example is from normal

class

I otherwise: is a counter-example of
normal class
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One-Class Classification: Common Approaches - III

Support Vector Data Description [Tax and Duin, 2004]

I obtains a spherical boundary, in the
feature space, around the data

I the volume of this hypersphere is
minimized, to reduce the effect of
incorporating outliers in the solution

I examples lying outside the hypershere
are considered abnormal
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One-Class Classification: Nearest neighbor

Nearest neighbor for novelty detection (Tax, 2001)
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One-Class Classification: Case Study: Predict Train Door Failures

Sequential anomalies: a study in the Railway Industry
[Ribeiro et al., 2016]

I Create a system to anticipate the development of a door
failure to proper maintenance schedule and to avoid
breakdown.

I Find patterns in data that do not correspond to the expected
behaviour.

I The goal is NOT to detect an abnormal door
movement.

I Issue an alarm whenever a structural door failure
is about to happen.

I Detect sequential anomalies.
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One-Class Classification: Case Study: Predict Train Door Failures - II

Original Data

I Pressure readers at both
chambers.

I Interval: 1/10 sec.

I Episodes time-series data
set.

I ≈ 60 observations / episode.

I Sept. to Dec. 2012.

I ≈ 500.000 observations.

I Movement duration not
steady.

I Unlabelled data set.

Open Close



20/51

One-Class Classification: Case Study: Predict Train Door Failures -

III

I Problem Setting
I Data: sequence of cycles (Open or Close).

I Goal: predict the structural state of the door: Normal or
Failure.

I Two-Step Approach:
1. Abnormal Cycle Detection

I classify each cycle as Normal (1) or Abnormal (0)

2. Failure Sequence Detection
I classify sequence of cycles as Normal or Failure.
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One-Class Classification: Case Study: Predict Train Door Failures -

IV

I Abnormal cycle detection assumes independence between
observations.

I Structural failure detection must take into account sequence of
observations.

I For that, we use a Low-Pass Filter to post-process cycle
classification output.

yi =

{
1 if i = 0

yi−1 + α ∗ (xi − yi−1) if i > 0

where, for instant i , yi is filter output and xi is original signal.

I The α parameter smoothes abrupt changes in the original signal.

I Lower values of α cause more inertia.

I Failure Threshold: yi < 0.5
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One-Class Classification: Case Study: Predict Train Door Failures -

V

I Experiments
I different memory models
I different one-class classification models
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One-Class Classification: Case Study: Predict Train Door Failures -

VI

Impact of low-pass filter

I reduction of false alarms using a sliding window with
self-feedback memory model.

Number of False Alarms
open close

learning before after before after
algorithm filter filter reduction filter filter reduction

autoenc 34 6 82% 30 0 100%
boxplotEns 146 36 75% 115 10 91%
ocsvm 292 99 66% 325 216 34%
occ 220 39 82% 239 16 93%

I low-pass filter significantly reduces the number of false alarms.
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Novelty Detection: Problem Definition

I Training set (Offline Phase)

I Dtr = (X1, y1), (X2, y2), . . . , (Xm, ym)

I Xi : vector of input attributes for the ith example
yi : target attribute

I yi ∈ Ytr where Ytr = c1, c2, . . . , cL

I When new data arrive (Online Phase)

I Given a sequence of unlabelled examples Xnew

I Goal: Classify Xnew in Yall where Yall = c1, c2, . . . , cL, . . . , cK
and K > L

Open-set Recognition
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Introduction - Why frogs?

- Anura is the name of an order of animals in the Amphibian class which lack 
a tail, this includes frogs and toads.

- Frogs are very sensitive 
to environmental changes

2
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Why monitor populations of frogs?

Hypothesis: Tracking the changes in the anuran populations 
can help us to determine ecological problems in early 
stages.

It involves several manual tasks!
3
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Proposal

Signal processing (SP) + Wireless Sensor Networks (WSN) + Machine Learning (ML)

Advantages: It is Automatic, less intrusive and allows long term monitoring.

4
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How to do that?

1) Pre-processing: 
a) Filter: band-pass filter, wavelet decomposition, etc.
b) Segmentation: syllable-based approach (xk)

2) Feature Extraction: that maps xk→ck
a) Mel-frequency cepstral coefficients (MFCCs)
b) Spectral centroid, Spectral bandwidth, Pitch, etc. 

3) Recognition: ML technique to classify ck→ID (species ID)
a) Support Vector Machine, kNN, Tree, etc.

5
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Segmentation and feature extraction

6
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Knowledge organization

Carl Linnaeus has defined a 
particular form of 
biological organization 
called taxonomy in his work  
Systema Naturae (1735). 
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How to improve the classification using the taxonomy?

- The anura Order has 31 Families 
(approximately)

- These Families are divided into several 
genus

- And finally, these genus are divided in 
almost 6000 species 

Hypothesis: the phylogenetic taxonomy may 
describe similar calls among species that 
belong to the same genus and family2.

2 B. Gingras and W. T. Fitch. 
A three-parameter model for classifying anurans into four genera based on advertisement calls. 
The Journal of the Acoustical Society of America, 133(1):547–559, 2013.

Illustrative figure.
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Novelty Detection: Problem Definition

I Offline Phase
I All training examples belong to the known classes.

I Online Phase
I Examples not explained by the current model are labeled as

unknown.

I Cohesive group of unknown examples are used to detect novel
classes or extensions to the known classes.



28/51

Novelty Detection: Problem Definition - II

I In data streams, concepts are hardly ever constant.

I It is important to distinguish novelty from:

I noise and outliers

I concept drift

I concept evolution

I recurring concepts
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Novelty Detection: Problem Definition - III
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Novelty Detection: Problem Definition - III
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Novelty Detection: Problem Definition - III
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Novelty Detection: Problem Definition - IV

I In data streams scenarios:

I new concepts may appear
I known concepts may evolve, disappear or reappear

I By monitoring the data stream, emerging concepts may be
discovered

I Emerging concepts may represent

I an extension to a known concept (extension)
I a novel concept (novelty)
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Novelty Detection: Problem Definition - VI

I Novelty Detection Systems

I OLINDDA: OnLIne Novelty and Drift Detection Algorithm
[Spinosa et al., 2007]

I ECSMiner: Enhanced Classifier for data Streams with novel
class Miner [Masud et al., 2011]

I MINAS: MultI-class learNing Algorithm for data Streams
[de Faria et al., 2016]
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Novelty Detection: Key Aspects

I Decision Model for Known Normal Patterns
I number of classes that represent the normal patterns
I number of classifiers
I supervised/unsupervised learning
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Novelty Detection: Key Aspects - II

I Classification

I number of classifiers
I number of examples that may

compose a novelty pattern

I Detection of Novelty Patterns

I number of classes that compose the novelty patterns

I Decision Model Update

I type of update (with/without feedback)
I number of classifiers
I forgetting mechanisms to remove outdated concepts
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Novelty Detection: MINAS algorithm

MINAS: MultI-class learNing Algorithm for data Streams
[de Faria et al., 2016]
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Novelty Detection: MINAS algorithm - II

I unsupervised algorithm for novelty detection in data streams
multi-class problems
I training examples are composed by many classes
I there may be also several novel classes

I use of offline (training) and online phases
I in each phase learns one or more classes

I cohesive set of examples is necessary to learn new concepts or
extensions
I isolated examples are not considered as novelty
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Novelty Detection: MINAS algorithm- III

Offline Phase
I learns a decision model based on the known concepts about the

problem (k-means or Clustream)

I runs only once

I each class is represented by a set of clusters (hyperspheres)



39/51

Novelty Detection: MINAS algorithm- IV

Online Phase

I receives new unlabelled examples from the stream

I classifies each new example as one of known classes or as unknown

I unknown examples are stored in the Short Term Memory

I from time to time
I finds clusters in the examples stored in the Short Term Memory

I clusters far away from existing ones: novel concept.

I clusters close to existing ones: extend known concepts.
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Novelty Detection: MINAS algorithm - V

Online Phase



41/51

Novelty Detection: MINAS algorithm - VI

Treatment of Outliers
I clustering is applied to the unknown examples

I each cluster is validated by the evaluation of its representativeness
and cohesiveness

I clusters with low value are considered invalid and removed

I however, their examples stay in a temporary memory

I if there is no space available, the oldest example is removed

I there is a high chance that the removed examples are noise or
outliers
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Evaluation Issues: Adaptation of binary classification metrics

I Precision and Recall [Albertini and de Mello, 2007]

Precision =
# true detected novelties

# detected novelties
Recall =

# true detected novelties

# novelties

I Mnew and Fnew [Spinosa et al., 2007]

Mnew =
100 ∗ # false detected novelties

# novelties
Fnew =

100 ∗ # false detected normalities

# total − # novelties

I How to reflect the unknown label in the evaluation?

I How to extend the evaluation to a multi-class scenario?
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Evaluation Issues: A Rectangular Confusion Matrix [de Faria et al., 2016]

I At the beginning of online phase, the model is composed by the
classes learned offline.

I When a new concept is discovered, the
model is updated and a new column is added to the confusion matrix.

I rows: true classes (known + novelty)

I columns: predicted classes (known + novelty patterns + unknown)
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Evaluation Issues: A Rectangular Confusion Matrix [de Faria et al., 2016]

I The confusion matrix is not squared.

I The number of columns increases dynamically

I From time to time novelty patterns are associated to classes so to
minimize the error.
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Challenges and Future Work

I Most of the techniques use one-class classification
I many real-world applications are, in fact, multi-class scenarios

I Assumption that true labels will be available
I time consuming
I support from domain expert

I Outliers, noise, changing environments
I depends on the data set
I concepts may evolve gradually or abruptly
I distinguish noise, outliers from a novel concept



48/51

Challenges and Future Work - II

I Recurring contexts

I an important phenomenon observed in many real-world
applications (e.g. climate change, electricity demand)

I systems typically use a forgetting mechanism of old concepts;

I a recurring class may be confused with the emergence of a new
class → it leads to high false positive rates

I relearn an old concept is a waste of effort

I ideally, they should be saved and reexamined at some later
time

I identify when a concept is reappearing
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Challenges and Future Work - III

I When to apply novelty detection in data streams
I whenever new example arrives is time consuming
I define the time interval

I Algorithms to induce the decision model
I supervised algorithms need labeled examples
I unsupervised algorithms (e.g. kmeans) assume that classes

constitute hyperspheres, need nr. clusters as input., handle
only numerical attributes

I Evaluation issues and experimental methodology
I lack of standards
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