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Definition
• Organize data in groups so that exists:

– High similarity between the elements of a group
– Low similarity between groups.

• Contrast to classification: considering the data, find the 
“labels” for the class attribute for each case in the training set 
and the number of classes.

• Informally, find the natural grouping among the elements of a 
dataset.

• Other names for this process:
– Marketing, segmentation,
– In psychology,  sorting,
– Statistics, classification,
– In AI,  unsupervised learning.
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Natural groups in these data?
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Clustering

Sport Cars Non Sport cars
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Natural groups in these data?



Clustering

Europeans AmericanAsian

Clearly, a subjective process…
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Natural groups in these data?



An example…

Clustering using k-means algorithm. Generated synthetic data to 
derive three partitions (blue, green and orange).



Similarity
• Important concept:
– the state of being similar; likeness; resemblance.
– an aspect, trait, or feature like or resembling another 

or another's: - (dictionary.com)

• Question?
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Similarity measure
• Defined as a measure of distance between 

two objects:

Clustering

Definition:  Let O1 and O2 be two objects (cases).  
The distance (dissimilarity) between O1 and O2 is a 
real number denoted as d(O1,O2)

d(O1,O2) 342.2
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Similarity Measures
• Real number attributes:
– Euclidian distance

– Manhattan distance

– Minkowski distance
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• Binary Attributes

• Nominal Attributes (m = #matches,  p = #vars)
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Similarity Measures



Similarity between Objects

Clustering
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• How to compute distance between objects 
with vars of different types?

For p vars, the comparison is:
0, if x1 or y1 do not 
exist. 1,otherwise.

Distance between
objs obtained using

var f.
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Clustering

Representing Clusters

a

b

c

d
e

f

g
hi

j

k

Disjoint sets
Intersection Sets

a

b

c

d
e

f

g
hi

j

k

12



Clustering

Hierarchical ClustersProbabilistic Clusters
1 2 3

a 0.5 0.1 0.4

b 0.7 0.2 0.1

c 0.1 0.1 0.8

d 0.1 0.2 0.7

e 0.5 0.1 0.4

f 0.1 0.7 0.2

g 0.4 0.5 0.1

h 0.2 0.8 0.0

i 0.3 0.5 0.2

j 0.1 0.7 0.2

k 0.55 0.15 0.3

g f    j    h    e    k     a    b    i    c    d
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Clustering
• Partitioning

– Define several partitions of objects and then evaluate using a 
criterion. e.g. k-means, where k is given.

• Hierarchical
– Build a hierarchical composition of objects according to some 

criteria. e.g. BIRCH , weka HClustering e Cluto.
• Density-based

– Use the notion of cluster density (#objs in a cluster). Enables to 
find non spherical clusters (which does not happens in partition 
methods where a distance measure is used). It also permits to 
filter outliers. e.g. weka DBSCAN e OPTICS.

• Model-based
– Define a model for each cluster. For each model, find the best fit 

for the data. Enables to find the ideal k value (#clusters) using 
standard statistics. e.g. weka CobWeb, EM.
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Partition Algorithms

• Problem: Given n data objects and one k
parameter defining the number of partitions, 
gather the n objects into k partitions. Each 
partition represents a cluster. The clusters are 
defined in such a way that optimizes a 
objective partition criterion i.e. similarity 
function. Thus, objects of the same partition 
are similar. On the other hand, objects from 
different clusters are different (in terms of 
attribute values).
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Using the distance between 
each obj and the centroid

(e.g. Euclidian distance)

K-means Algorithm
K-means
• Input: n objects and a k parameter defined by the user.
• Output: a set of k clusters that minimizes the square error 

criterion.
1. Randomly choose k objs to play the role of the k clusters 

centroids (mi)
2. Repeat

1. (Re)Assign each obj to the most similar cluster (considering the mean 
value computed using the objs already assigned to the cluster),

2. (Re)compute the mean for each cluster (obtain a new centroid).

3. Until there is no more change (obj cluster stability)

Clustering

k-modes for 
categorical data
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K-means Clustering: Initial state
Algorithm: k-means,  distance measure : Euclidian distance, ki: centroid of partition i
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K-means Clustering: Step 2
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Algorithm: k-means,  distance measure : Euclidian distance, ki: centroid of partition i
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K-means Clustering: Step 3
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Algorithm: k-means,  distance measure : Euclidian distance, ki: centroid of partition i
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K-means Clustering: Step 4
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Algorithm: k-means,  distance measure : Euclidian distance, ki: centroid of partition i



0

1

2

3

4

5

0 1 2 3 4 5

A
tr

ib
ut

o 
Y

atributo X

K-means Clustering: final state

k1

k2
k3

Clustering 21

Algorithm: k-means,  distance measure : Euclidian distance, ki: centroid of partition i



Comments on  k-Means

• Pros
– Efficient: complexity O(tkn), where n is the  #objects, k is 

#clusters, and t  the number of iterations. Typically,  k, t <<  n.
– Frequently finish in a local optima. Global optima can be found 

using other techniques like: : simulating annealing and genetic 
algorithms. 

• Weakness
– What about categorical data? No mean measure
– Algorithm requires a predefined parameter k ( number of 

clusters), 
– Cannot deal with noise and outliers,
– Has difficulty in identifying clusters with non convex shapes 

(typically finds spherical shape clusters).
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Expectation-Maximization

• Extends k-means by considering the possibility of 
non rigid frontiers between clusters,

• The association between an object and a cluster 
is defined using a measure (weight) of 
membership probability (Oi ϵ ck),

• Centroids are computed using these weight 
measures

• Gaussian Mixture Model estimation…

Clustering

Mixture = probability 
distribution that represents 

each cluster!
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Mixture Model
• Consider a dataset with a single attribute (numerical). Assume that 

clusters have a Gaussian distribution  (with different parameters μ e 
σ).

• In this context, the clustering problem resumes to consider the 
training cases (without class), a parameter k and to compute the 
mean, standard deviation and probability distribution between 
clusters for each cluster i.e. for cluster A define μA, σA and p(A).

• For k = 2: suppose that for a dataset where one has to compute the 
parameters μA, σA , μB, σB e p(A) and where p(A) + p(B) = 1. This is 
the Mixture Model!

• Knowing each cluster distribution, it is easy to calculate the 
parameters (where  p(A) is obtained by the proportion in the 
dataset).

Clustering

μ = !!" !"" … "!!
$ σ2 =

𝑥1− µ 2+ 𝑥2− µ 2+⋯+ 𝑥𝑛 − µ 2

𝑛 − 1
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Mixture Model
• Given a new case, computing the membership probability to 

cluster A is:

Clustering

Pr(A|x) = %& 𝑥 𝐴 × ()(+)
()(!)

= - !;/#,1# × ()(+)
()(!)

where f (x;σ,μ) = 2
345

𝑒
! " # !

$%! represents the Gaussian 
distribution function.

• The final results is a not a set of clusters, rather it is the set of 
membership probabilities of each case x belonging to each 
cluster!

• The problem gets difficult because we do know neither the 
distribution of the training cases nor the 5 parameters of the 
Mixture Model. 25



Mixture Model

Clustering

• One approach: 
Use k-means and iterate. Assign random values to each  
parameters. Use them to compute the membership probabilities 
of each case to each cluster. Finally, use these probabilities to 
(re)estimate the parameters and then repeat.  This is the 
essence of the EM clustering algorithm!!

• Being wi=	Pr(i ∈	A) for case i and cluster A:

• Compute likelihood through the probability of each case on each 
cluster to decide when to stop!

• In practice use log-likelihood of

μA = 2!!!"2"!"" … "2!!!
2!"2"" … "2!

σ𝐴2 =
𝑤1 𝑥1− µ𝐴 2+ 𝑤2 𝑥2− µ𝐴 2+⋯+𝑤$ 𝑥𝑛 − µ𝐴 2

𝑤1+ 𝑤2+⋯+𝑤$

7
3

(𝑃𝑟 𝐴 Pr 𝑥𝑖 𝐴 + Pr 𝐵 Pr(𝑥3|𝐵))

Computed from f (x;σ,μ) 26



Clustering

EM algorithm (cont)
e<Î=å å

i k
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Stopping criterion:  

The log-likelihood converges to an ε value.

An overall likelihood measures the clustering quality. 
Tends to increase along the number of iterations. 
The process stops when the increment between iterations
(ε) is negligible.

Using cross validation one can automatically derive the 
number k of clusters. 27



The optimal number of cluster can be obtained by iterating over a objective function 
e.g. mean distance inside each cluster.

An abrupt change of values when k = 2 suggests two clusters in the data. This 
technique is known as “knee finding” or “elbow finding”.
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Executing  EM clustering



Executing  EM clustering



Executing  EM clustering



Executing  EM clustering



Executing  EM clustering



Density Based Methods

• Clustering using density
– The idea is to drive the process using density and 

neighbourhood. The process evolves through the 
localization of high density regions (clusters) that 
are well defined and separated from low density 
ones;

– There is no need to define the number of clusters 
to be found!

– DBSCAN is the best known algorithm.
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Density: center-based approach

• Density for a given point (case) in the dataset is 
measured as the counting of points that distance 
a given range (radius) ε from	that	point.

Clustering 35

A ε

• In this case density of A  =  6    ( 5 neighbours + A)



Core, Border and Noise points

• The algorithm gets two input parameters:        
ε and  minpts. That is, radius and minimal 
count.

• Classify the dataset points as:
– Core: points that are part of a “density based 

cluster” i.e. where count (density) is ≥ minpts.
– Border: non “core” points but that are in the 

neighbour of a “core”.
– Noise: all the other points …
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DBSCAN algorithm (simplified)

Input(ε,minpts)

1. Classify all point in the dataset as Core, Border or Noise.
2. Delete all Noise points.
3. Establish a connection between Core points that distance less than ε	 between 

them.
4. Build a separated cluster out of the group of all interconnected points. (that are 

connected to a Core point).
5. Assign each Border point to a cluster of one of the associated Core points.

Clustering 37

N C B

C = Core
B = Border
N = Noise



DBSCAN algorithm
Input: dataset, distfunct, ε and  minpts
C = 0  // cluster counter
for each point p in dataset
{     If label(p) == undefined // just for “unlabeled” points!

{ Neighbours = findN(distfunct, p, ε) // find neighbours
if |Neighbours| < minpts

label(p) = Noise
else
{ C++

label(p) = C
SeedSet = Neighbours \ {p}
for each point q in SeedSet
{ if label(q) == Noise  

label(q) = C // change Noise to Border point!
if label(q) == undefined
{ label(q) = C // label neighbour

Neighbours = findN(distfunct, q, ε)
if |Neighbours| ≥ minpts // density check

SeedSet = SeedSet U Neighbours
}

}
}

}
} Clustering 38

function findN(df,q,eps)
{  N = { }

for each p in dataset
if df(q,p) ≤ eps

N = N U {p}
return N

}



Comments
• The algorithm is quadratic – in the worst case 

is O(m2),  where m =#dataset. However, there 
are data structures e.g. kd-trees, that yield 
implementation with O(m × log(m)).

• It is incomplete! Noise are ignored…
• The choice of ε is	crucial. Very high values 

imply a number of clusters as the number of 
cases in the dataset. Low values imply density 
= 1 for all points.

• Similar situations for minpts…
• There are strategies to automatically derive 

these parameters.
Clustering 39



Hierarchical Clustering

• To create an hierarchical decomposition of 
objects in a dataset following a specific 
criterion (similarity measure)
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A structure to summarize similarity measures

Definition of a dendrogram: 
A structure to evaluate/discriminate cases from a dataset. 
Known as phylogenetic trees in biology

Similarity between two objects in a 
dendrogram is represented by the height 
of the lowest internal node that both 
objects share.
Clustering

Internal node

root

Internal branch

Terminal branch

leaf
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The dendrogram gives ways to find the “correct” number of clusters. As happens in this 
example, two sub-trees highly separated suggest two clusters.

Clustering

two clusters ??

HC for defining the number of partitions
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Outlier

Outliers detection

This isolated branch suggest an object from the dataset 
that is very different from all the other objects
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Types of Hierarchical Clustering

Number of possible dendrograms with
n leaves =  (2n -3)!/[(2(n -2)) (n -2)!]

Leaves Dendrograms
2 1
3 3
4 15
5 105
... …
10 34,459,425

Bottom-Up (agglomeration): begin 
with n clusters (1 obj = 1 cluster). Find 
the best pair of objects to join in a new 
cluster. Repeat until all clusters are 
agglomerated into a single cluster.

Top-Down (division): begin with all 
objects in the same cluster. Consider 
all partitions that divide the cluster in 
two. Pick the best partition and 
recursively apply the same procedure 
to both sub-clusters yield by that 
partition. 

Clustering

Like in decision tree building, it is not 
feasible to test all dendrograms. 
Heuristics have to be used to find the 
“best” structure.

It can be done using:
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The process begins by defining a 
similarity matrix with distances between 
all objects of the dataset. Along the 
execution, this matrix is rebuilt with the 
introduction of new clusters and the 
deletion of already joint ones.

Similarity Matrix
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Bottom-Up (agglomeration):

…

…

…

All possible 
pairs…

All possible 
joins…

All possible 
joins… Choose

the best

Clustering 46

Choose
the best

Choose
the best



How to define the distance between an object and a 
cluster or the distance between clusters ?

• Methods:

• Single linkage (nearest neighbour): distance between two clusters is 
measure through the distance between the two closest objects in both clusters 
(nearest neighbours). 
• Complete linkage (furthest neighbour): distance obtained using 
the two furthest objects in both clusters (i.e., by the "furthest 
neighbours").
• Group average linkage: distance obtained using the mean distance 
between all pairs of objects from the two clusters. 
• Wards Linkage: distance is computed by minimizing the variance from 
the cluster obtained from joining  two clusters
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Distance and Dendrograms
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Distance and Dendrograms



• No need to define the number k of clusters. 
• There is a natural intuition to interpret hierarchies (at 
least in some contexts)
• Scales bad: complexity (time) is at least O(n2),         
being n o the number of objects. 
• As all heuristics methods, there are local maximum 
problems!. 
• Interpreting the results can be quite subjective…

Hierarchical  Methods: Summary
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Summary

Clustering

• Natural groups in the data,
• Types of Clustering,
• Partitions and hierarchies,
• k-means and EM,
• Similarity measures,
• Density based methods
• Dendrograms
• Building dendrograms for hierarchical 
clustering.
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