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Adaptive Filters
Adaptive FIR Filter and the LMS 

Algorithm
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Finite Impulse Response Filter
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Adaptive FIR Filter

T
110 )](,),(),([)( nwnwnwnw N  

T)]1(,),1(),([)(  Nnxnxnxnx 

)()()()()(
TT

nwnxnxnwny 

filter

x y
d

e

error

desired
output

output

adaptive
algorithm

input



4 © 2019 Arm Limited

Adaptive FIR Filter
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Defining a Cost Function
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Defining a Cost Function
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Defining a Cost Function
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From now on, consider mean squared error to be a (quadratic) function of w .
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Minimum of the Cost Function
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Differentiate mean squared error with respect to w.

Derivative will equal zero at minimum corresponding to optimum value of w .

Hence, the optimum value of w is a function of constant statistical properties of x and d.
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Visualizing the Cost Function
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Steepest Descent
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The LMS Algorithm

• The steepest descent method requires an estimate of the gradient of the cost function 
at each step.

• There are various ways of estimating that gradient.

• A general method might be to alter the value of w slightly, and over a suitable period of 
time in each case, assess the value of the cost function.
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The LMS Algorithm

• However, we will look at a method that requires only instantaneous measurements in 
order to estimate the gradient of the cost function.

• The Least Mean Squares (LMS) algorithm uses instantaneous error squared ek
2 as an 

estimate of mean squared error E[ek
2].
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The LMS Algorithm

This yields the following gradient estimate

Using vector notation
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The LMS Algorithm

Differentiating the expression for instantaneous squared error with respect to w
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The LMS Algorithm

The steepest descent algorithm using this gradient estimate is:

w k  1  w k  b ˆ k

 w k  2b e k x k
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The LMS Algorithm

• Gradient estimate is imperfect.

• Adaptive process will be noisy.

• Conservative choice of ß value advisable

• Algorithm is simple.

• Not computationally intensive

• Ideal for real-time implementation
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The LMS Algorithm

• Variants of the basic LMS algorithm

w k  1  w k  2 b sgn e k x k

w k  1  w k  2 b e k sgn x k 

w k  1  w k  2 b sgn e k sgn x k 
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Adaptive Filters - Key Points

• We’ve looked at adaptive filters that may be represented in the form
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Adaptive Filters - Key Points

• The filter adjusts its characteristics to minimize the average power in e.

• Depending on how desired output d is derived, this behavior can be put to a number of 
different uses.

• For given statistical properties of x and d, average power in e is a function of w.
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Adaptive Filters - Key Points

• Adaptation is the search for filter parameter settings (weights, coefficients) that 

minimize the variance of e.

• The filter adjusts its characteristics to minimize the average power in e.

• Depending on how desired output d is derived, this behavior can be put to a number of 
different uses.

• For given statistical properties of x and d, average power in e is a function of w.
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Adaptive Filters - Key Points

• Adaptation is the search for filter parameter settings w that minimize average power in 

e.

• If the filter is a linear FIR, average power in e is a quadratic function of w.

• Steepest descent is therefore feasible.

• But requires knowledge of the gradient of the cost function (average power)
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Adaptive Filters - Key Points

• The LMS algorithm provides an instantaneous estimate of gradient for use in the 
steepest descent algorithm.

• Enabling us to search for w that minimizes C(w) on-line, with minimal computational 
burden

• LMS algorithm and adaptive FIR filter are the basis of many other learning systems.


