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© Introduction
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Automated machine learning (AutoML) is the process of automating the
end-to-end process of applying machine learning to real-world problems.
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The Perfect Model Does Not Exist

“All models are wrong,
but some are useful.”
—GEORGE BOX, 1919-2013
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Machine Learning High-Level Overview

Machine Learning

Unsupervised Feature extraction

Machine learning
algorithm

Grouping of objects

Training set

Annotated data ’
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What is Automated Machine Learning (AutoML)?

“Machine learning is very successful, but its successes crucially rely on
human machine learning experts, who select appropriate ML architectures
(deep learning architectures or more traditional ML workflows) and their
hyper-parameters.

As the complexity of these tasks is often beyond non-experts, the rapid
growth of machine learning applications has created a demand for
off-the-shelf machine learning methods that can be used easily and
without expert knowledge.

We call the resulting research area that targets progressive automation of
machine learning AutoML.”

https://sites.google.com/site/automl2016/
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Why Automated Machine Learning (AutoML)?

@ The demand for machine learning experts has outpaced the supply.
To address this gap, there have been big strides in the development of
user-friendly machine learning software that can be used by non-
experts and experts, alike.

@ AutoML software can be used for automating a large part of the
machine learning workflow, which includes automatic training and
tuning of many models within a user-specified time-limit.
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What is NOT Automated Machine Learning (AutoML)?

@ AutoML is not automated data science;

@ AutoML will not replace Data Scientist;

o All the methods of automated machine learning are developed to
support data scientists, not to replace them.

o AutoML is to free data scientists from the burden of repetitive and
time-consuming tasks (e.g., machine learning pipeline design and
hyper-parameter optimization) so they can better spend their time on
tasks that are much more difficult to automate.
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@ Automated Feature Engineering

o Feature selection
o Feature extraction
o Detection and handling of skewed data and/or missing values

@ Model Selection

o Meta learning and transfer learning

@ Hyper-parameter optimization
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© Automated Feature Engineering
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Model selection considerations

Interpretability
Ability of users to understand the model, the parameters of the model and
their effect on the outcome

@ In regression, coefficients enable us to interpret the influence of an
independent variable on the dependent variable.
The standard error of estimates of the coefficients enable us to
determine how confident are we on these estimates

@ In decision trees a complex decision is a sequence of simple decision
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Model selection considerations

Parsimonious models
A parsimonious model is a model that accomplishes a desired level of
explanation or prediction with as few predictor variables as possible.

@ Models that use internal feature selection: decision and regression
trees, decision rules

@ In regression, using Exhaustive search, Forward search, Backward
search or Stepwise regression in model selection
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Feature Selection

| i
v—v

Feature Selector

Greedy Forward Selection

o Selecting best features iteratively
o Selecting features based on coefficients of model

Greedy backward elimination

Use GBM for normal features

Random Forest for feature rank
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© Model Selection
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The Algorithm Selection Problem

@ Typically many different algorithms exist in a particular domain
(classification, regression, optimization etc.).

@ Given a decision problem, We want methods that can help us to
select the one with the best performance.

@ This problem was first formulated by Rice [1976]:

e For a given problem instance x € P, with features f(x) € F,
e find the selection mapping S(f(x)) into algorithm space A,
e such that the selected algorithm o € A
e maximizes the performance mapping y(«(x)) € Y.
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The Algorithm Selection Problem
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Selection Mapping

@ In subsequent work the selection mapping S(f(x)) was generated using
ML methods.

@ The process is often referred to as meta-learning.

@ The process can be applied to the problem of selecting classification
algorithms.
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Meta-Learning for Algorithm Selection

@ A large set of techniques is available in Machine Learning (ML).
e + It increases a possibility that a good solution can be found.
e — It is much harder to find the right ML algorithm, as many
alternatives exist.

The problem of selecting a suitable (the best) algorithm can be seen

as a problem of search.

e We cannot test all ML algorithms for computational reasons (there
are thousands of variants of ML algorithm + parameter settings)

o Why meta-learning?

o It helps to build on previous experience and
o identify the right algorithm more effectively.

In this part we focus on classification algorithms.
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Identifying a Subset of Algorithms with Meta-models

@ Phase 1:

o Consider the given new dataset,
construct characteristics / meta-features.
o Exploit meta-level model to
identify a suitable subset of algorithms.

@ In some work the result is a ranked subset of classification algorithms
permitting reduced search.
@ Phase 2: Search through the reduced space of algorithms.

o Evaluate each option using

@ a chosen evaluation method (typically a cross-validation) and
e a given performance criteria (e.g. accuracy).

o Identify the best alternative (or an algorithm that is comparable).
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Selecting ML Algorithms on Meta-features
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Meta-Features: Data Characteristics

@ The selection method relies on dataset characteristics or meta-features
to provide some information that can
differentiate performance of a set of given learning algorithms.

@ These typically include :

e statistical and information-theoretic measures,
o model based characterization,
e landmarking
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Statistical and Information-Theoretic Measures

@ These measures typically include :
e number of classes,
e number of features,
e ratio of examples to features,
o degree of correlation between features and target concept,
e average class entropy
e etc.

e + Positive and tangible results (e.g., ESPRIT Statlog and METAL).
@ — There is a limit on how much information these measures can
capture,

o as these measures are uni- or bi-lateral measures only
e capture relationships between two attributes only or
e one attribute and the class.
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@ Examine performance of a set of simple and fast learning algorithms
(land-markers).

@ The accuracy of these land-markers is used to characterize the
dataset.
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@ A meta-level system / model helps to map characteristics into
classification algorithms.
@ The meta-level system / model can be in the form of:

meta-level rules,

o k-NN (on the meta-level),

e neural network,

e other type of classification model on the meta-level.
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Employing a Rule Model on the Meta-Level

e Early approaches (Rendell & Cho, 1990) used rules, such as:
o If the given dataset characteristics are G, G,

..., C, then use
algorithm A; in preference to algorithm A,.

IF (# training instance < 737) AND
(# prototype per class > 5.5) AND
(# relevants > 8.5) AND
(# irrelevants < 5.5)

THEN IB1 will be better than CN2
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Employing 1-NN on the Meta-Level

One simple approach uses 1-NN :
o Compare meta-level characteristics of the new problem with
meta-level characteristics of past problems,
@ ldentify the most similar dataset

@ Retrieve either :

o The classification algorithm that performed best on that dataset,
e Ranking of classification algorithms, ordered by performance.
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Employing k-NN on the Meta-Level

A more complex approach employs k-NN:
@ Uses k-NN method to identify the most similar datasets.
@ For each of these datasets,
o retrieves the ranking of the candidate classification algorithms,
o based on past performance criteria (accuracy, learning time).

o Aggregate the rankings obtained to generate the final recommended
ranking of algorithms.

e Evaluate the top N elements in the ranking (Phase II)
select the one with the best performance.
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Model selection considerations

Ys

Second-level algorithm

Ensemble models

Ensemble methods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any of the constituent
learning algorithms alone.
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o Hyper-parameter Tunning
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Parameters vs Hyper Parameters

@ Parameters: Values that can be estimated from data
o Examples:
o Regression Coefficients
o Weights in a Neural Network
@ HyperParameters: Values external to the model and cannot be learnt
from the data
o Examples:

@ k in k-Means
@ Learning rate in Neural Network
o Regularization parameters
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Hyperparameters

Model Parameters to optimize Good range of values
Linear e fit_intercept e True / False
Regression e normalize e True/False
Ridge e alpha « 001,01,1.0, 10, 100
« Fit_intercept « True/False
« Normalize s True/False
k-neighbors ® N_neighbors e 2,4,816....
- p s 2,3
SVM s« C « 0001, 0.01.....10...100...1000
s Gamma s ‘Auto’, RS*
» class_weight = ‘Balanced', None
Logistic = Penalty e Llori2
Regression s C = 0.001,0.01....10..100
Naive Bayes (all NONE NONE
variations)
Lasso « Alpha s 011010
* Normalize e True/False
Random Forest ® N_estimators e 120, 300, 500, 800, 1200
s Max_depth s 5,8, 15, 25, 30, None
e Min_samples_split e 1,25 10,15, 100
® Min_samples_leal e« 125,10
= Max features = Log2, sqrt, None
Xgboost e Ela « 0.01,0.015, 0.025, 0.05, 0.1
s Gamma # 005-0.1,03,05,0.7,09,10
s Max_depth e 3,57,91215,17,.25
* Min_child_weight s 1,357
® Subsample e 06,07,08,09 10
* Colsample_bytree = 06,07,08,0910
» Lambda = 001-0.1,10,RS*
s alpha s 0,01,05 1.0RS*
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Hyperparameter optimization

Hyperparameter optimization

finds a tuple of hyperparameters that yields an optimal model which
minimizes a predefined loss function on given independent data
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X1 Xy X1
(a) Standard Grid Search (b) Random Search (c) Latin Hypercube

® = |ndividual model training and assessment
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Hyperparameter optimization

@ Grid search
an exhaustive searching through a manually specified subset of the
hyper-parameter space of a learning algorithm.

@ Random search
replaces the exhaustive enumeration of all combinations by selecting
them randomly.

@ Bayesian optimization
builds a probabilistic model of the function mapping from
hyperparameter values to the objective evaluated on a validation set.

@ Gradient-based optimization
For specific learning algorithms, it is possible to compute the gradient
with respect to hyper-parameters and then optimize the
hyper-parameters using gradient descent.

@ Evolutionary optimization

uses evolutionary algorithms to search the space of hyper-parameters
for a given algorithm.

Jodo Gama jgamaG@fep.up.pt MetalLearning - AutoML FEP & University of Porto 33/55



KNIME - Hyper-parameter tunning

Parameter Optimization
Loop Start Parameter
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™. >
- =
w ey Decision fp’{
Node 1 - Tree Learner .
Lt Node 2
> o
w Decision Tree
CSV Reader Partitioning Node 4 Predictor %:ore;
> — >
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KNIME - Hyper-parameter tunni

Parameter Optimization Dialog - 3:1 - Parameter Optimization Loop Start — [m] >
Loop Start
File
:,..\\ Standard settings  Flow Variables Job Manager Selection
Mode 1 Parameter Start value Stop value Step size Integer?
MinNrRecords | 4 20/1.0 | |®
CSV Reader Partitioning
>
&, » » o0
-+ oo )y,
Node 3 Mode
-+ Add new parameter
Search strategy | Brute Force ~
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Random Search

Cancel @‘l
Bayesian Optimization (TPE)
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KNIME - Hyper-parameter tunni

Parameter Optimization
Loop Start

Decision
[Tree Learner
e_®

>

Node 4

Node 1
CSV Reader Partitioning
B > > 5
»
Node 3 Node &

Dialog - 3:4 - Decision Tree Learner

File

Options PMMLSettings Flow Variables Job Manager Selection

dassifyColumn
splitQualityMeasure
pruningMethod
enableReducedErrorPruning
m minNumberRecordsPertode IE‘ MinhrRecords
m numverRecordsToView

splitAverage

m numProcessors

skipColumnswwithoutDomain

useFirstSplitColumn

firstSplitCalumn

binaryMominalSplit
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FilterMominalValuesFromParent
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KNIME - Hyper-parameter tunning

Dialeg - 3:2 - Parameter Optimization Loop End — ] s Parameter
File [Optimization Loop End

Options  Flow Variables Job Manager Selection Memory Policy

CSV Reader Flow variable with objective function value | Accuracy ~
Function should be... (®) maximized
H
2,
() minimized
MNode 3
oK Apply Cancel ©)
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KNIME - Hyper-parameter tunnin

All parameters - 3:2 - Parameter Optimizati...

File Edit Hilite Mavigation View

Table "default” - Rows: 17 Spec - Columns: 2 Prop Best parameters - 3:2 - Parameter ... O * S ——
RowID lI‘MinNrRm @Objech... File Edit Hilite Mavigation View lOptimization Loop En
Rowd 4 0.963 Properties Flow Variables ° . >
Rowl 5 0.967 Table "default” - Rows: 1 Spec - Columns: 2
Row2 6 0.967 - P
Ron3 & o oer RowID  [[1]MinNrR... [[D] Object...
Rond 3 na7 Best parameters|s [o.57 |
Row3s £l 0.967
Row6 10 0.963
Row7 11 0.959
Rowd 12 0.955
Rows 13 0.957
Row10 14 0.957
Rowll 15 0.957
Row12 16 0.953
Row13 17 0.945
Row14 13 0.945
Row15 19 0.945
Row15 20 0.947
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© AutoML Tools
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Hyper-parameter optimization

@ Auto Weka (Open Source)
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

@ H2o0.ai AutoML (Open Source)
https://www.h20.ai/

e TPOT (Open Source)
https://github.com/rhiever/tpot

@ Auto Sklearn (Open Source)
https://github.com/automl/auto-sklearn
http://automl.github.io/auto-sklearn/stable/

@ machineJS (Open Source)
https://github.com/ClimbsRocks/machineJS

@ AutoKeras
https://autokeras.com/
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Hyper-parameter optimization and Model Selection

AutoWEKA is an approach for the simultaneous selection of a
machine learning algorithm and its hyper-parameters; combined with
the WEKA package.

Auto-sklearn is an extension of AutoWEKA using the Python library
scikit- learn which is a drop-in replacement for regular scikit-learn
classifiers and regressors. It improves over AutoWEKA by using
meta-learning to increase search efficiency and post-hoc ensemble
building to combine the models generated during the hyperparameter
optimization process.

TPOT is a data-science assistant which optimizes machine learning
pipelines using genetic programming

H20 AutoML provides automated model selection and ensembling for
the H20O machine learning and data analytics platform.

mlr is a R package that contains several hyper-parameter optimization
techniques for machine learning problems.
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Deep Neural Network Architecture search

@ Google CLOUD AUTOML
is an could-based machine learning service which so far provides the
automated generation of computer vision pipelines.

@ Auto Keras
is an open-source python package for neural architecture search.

o Automl
Deep Learning with Metaheuristic
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Automated by TPOT

TPOT will automate the most tedious part of machine learning by

intelligently exploring thousands of possible pipelines to find the best one
for your data
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Which AutoML Tool?

A. Balaji, A. Allen Choosing the best AutoML Framework, 2020
https://medium.com/georgian-impact-blog/
choosing-the-best-automl-framework-4£2a90cb1826

@ a selection of 87 open datasets, 30 regression and 57 classification,
from OpenML

@ Comparison between four frameworks: automl, auto-sklearn,
TPOT, and H20

@ Auto-sklearn performs the best on the classification datasets and
TPOT performs the best on regression datasets.
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Classification Problems

Raw Per Model Classification Comparison (F1_SCORE)
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Regression Problems

Raw Per Model Regression Comparison (MSE)
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KNIME - AUTOML

File Reader
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KNIME - AUTOML

Dialog - 21:0 - AutoML (execute up-stream) - o x

File

Options  Flow Variables Memory Policy Job Manager Selection

Feauture Column Selection:

(@ Manual Selection () Widcard/Regex Selection () Type Selection

Exclude Indude
Y At
No colemres i thEs s > ~
»
g
« 2
(®) Enforce exdusion () Enforee inclusion

Models to Train:

Naive Bayes

Logistic Regression
Neural Network
Gradient Boosted Trees
Decision Tree

Random Forest
XGBoost Trees

Generalized Linear Model (H20)

Deep Learning (Keras)
Target Column:

¥ v
Metric for Auto Selection:

F-measure
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KNIME - AUTOML

AutoML

AutoML Summary View

Select Model (Optional)
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@ Final Remarks
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OpenML:Democratizing Machine Learning

OpenML manifesto:

As machine learning is enhancing our ability to understand nature and
build a better future, it is crucial that we make it transparent and easily
accessible to everyone in research, education and industry.

The Open Machine Learning project is an inclusive movement to build an
open, organized, online ecosystem for machine learning.

We build open source tools to discover (and share) open data from any
domain, easily draw them into your favourite machine learning
environments, quickly build models alongside (and together with)
thousands of other data scientists, analyse your results against the state of
the art, and even get automatic advice on how to build better models.
Stand on the shoulders of giants and make the world a better place.

Jodo Gama jgamaG@fep.up.pt MetalLearning - AutoML FEP & University of Porto 52 /55


jgama
Realce


@ Bibliography

Jodo Gama jgamaG@fep.up.pt MetalLearning - Autol FEP & University of Porto 53 /55



OpenML: https://www.openml.org/

https://github.com/rhiever/tpot

https://cran.r-project.org/web/packages/automl/index.html

https://www.ml4aad.org/automl/

https://en.wikipedia.org/wiki/Automated machine _learning
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