MAP-i: Knowledge Discovery from Databases 2022 / 2023

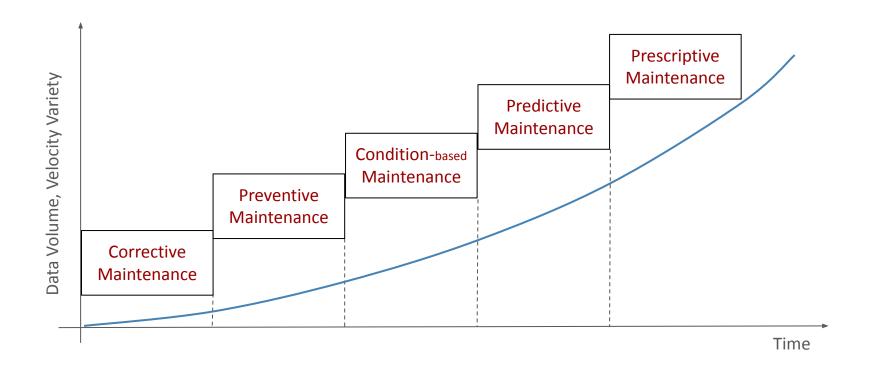
Data-driven Predictive Maintenance in Industry 4.0: Concepts and Challenges

Rita P. Ribeiro - rpribeiro@fc.up.pt

University of Porto and INESC TEC

Source: bossar.com

Maintenance Paradigms

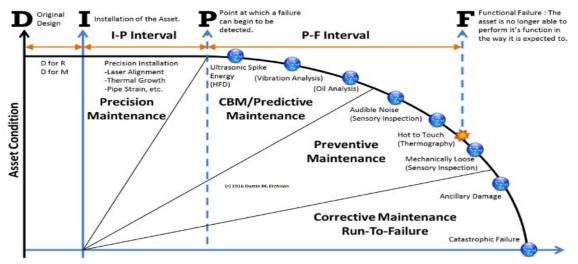


Maintenance Paradigms

Maintenance	Corrective	Preventive	Condition-based	Predictive	Prescriptive
schedule	non-fixed	fixed	non-fixed	non-fixed	non-fixed
repair actions	when it breaks	on predefined time intervals	based on degradation level	based on early-stages of evolving failures	based on early-stages of evolving failures
effectiveness	technician's experience	technician's experience	technician's experience and monitoring data	monitoring data	monitoring data and maintenance systems
costs / savings	downtime repairs	possible unnecessary repairs	repair when necessary	repair when necessary	optimum repair timing

Predictive Maintenance: Vision and Goals

 "Techniques designed to determine the condition of equipment and estimate when to do maintenance"



Source: production-technology.org

Predictive Maintenance: Vision and Goals

Asset Condition

- Health indicators are quantifiable characteristics of a population
- Normal or Healthy is acceptable/desired operation state
- Fault is an unpermitted deviation from the acceptable operating condition.
- Failure is a permanent interruption of a system ability to perform a required function.
- Component degradation or wear can be observed as a motion (in sensor space)

Predictive Maintenance: Vision and Goals

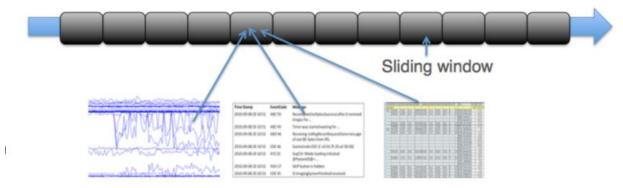
- Predictive Maintenance (PdM): important and active area in Industry 4.0
 - keep mechanical pieces working as long as possible
 - the goal is to ensure their normal functioning under any circumstances
 - avoid disruption of everyday operations or a chain reaction on other equipment.
- Predictive Maintenance (PdM) can resort to
 - Physics Model-based Approaches
 - Data-driven Approaches
 - Hybrid Approaches

- IoT embedded in machines and production lines is now a reality.
- Sensors provide a vast set of information on a equipment
 - Vibration, Temperature, Pressure, Acoustic Signals, Optical Signals, Speed, etc
- Large-scale stream processing is needed for real-time data
- Very important for industries for competitive reasons

Data-driven Predictive Maintenance (PdM) became one of the central answers

Dynamic Data Sources:

- sensor data recording various signals (environmental, physical, electrical or mechanical)
- logs data recording sequence of status
- service data with details of performed services (equipments, costs, technicians)



Source: Wang, Z. (2015)

- Dynamically define when a machine is okay or needs to be maintained.
- Use of advanced statistical methods, such as machine learning.
- Look at patterns across all sensors and make one multivariate prediction model.
- The more data sources and data available the better are the predictions.
- Predictive maintenance models get better at predicting future breakdowns over time.
- Find complex indications for breakdowns that are nearly impossible for humans to spot.

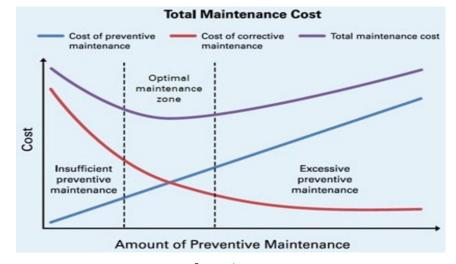
- Equipment is becoming more and more complex
 - We need better diagnostic and fault detection systems
- Building specialised diagnostic functions is expensive
 - It is unrealistic to expect that for each individual fault
- Real usage data shows actual problems to look for
 - Sometimes what is "known" turns out to be wrong
- What is important to focus on changes with age
 - We need continuous monitoring and lifelong learning

Objectives:

- minimize maintenance costs
- reduce unplanned downtime
- avoid cost for failure recovery
- avoid consequential costs for unplanned stops

Opportunities:

- shorter workshop visits
- better planning and diagnostics
- reduce number of incorrect repairs
- optimization of maintenance intervals



Source: upkeep.com

Some Application Domains

Energy Area

- Failure prediction of connected heating systems.
- Anomaly detection in electricity meters.

Industry Area

- Predictive maintenance of complex equipments in high-tech manufacturing.
- Failure prediction to minimize environmental hazards caused by equipment that performs extraction and refining of oil and gas.

Transport Area

- Monitoring sensor data from planes to increase passengers safety (e.g. turbofan engine).
- Prediction of breakdowns in public transports to avoid trip cancellation

Domain Challenges

What data to collect, so to identify the suitable equipment condition indicators?

- Internal conditions
 - many components that build up a complex system that is the equipment
- External conditions
 - affect the functioning of the equipment (weather, geographical position)
 - but, equipment context is sometimes unknown
 - external conditions and usage mixed with fault symptoms
- Low-quality data
 - tangential to the relevant processes
 - low measurement accuracy and frequency

Domain Challenges

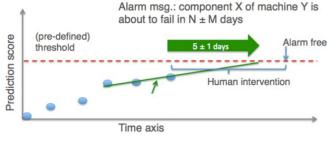
What data to collect, so to identify the suitable equipment condition indicators?

- Collecting large amounts of (reasonably reliable) normal operation data is (relatively) easy
- However, this data is usually far from being fully representative!
- We need faulty data!
 - Failures are usually rare events that take time to develop
 - Run-to-failure is expensive, and diagnostics is difficult
 - Fault injection does not embrace all situations
 - It is difficult to know all the possible types of faults

Domain Challenges

What data to collect, so to identify the suitable health indicators?

- Even if we gather faulty data ...
- The appropriate time window to consider, depends on the domain
 - o width
 - how far back is data relevant?
 - increment
 - how often should be learned new model?
 - position
 - what is latest time and duration of human intervention?



Wang, Z. (2015)

How to create meaningful features from raw data?

Data acquisition

- raw sensor data
- high dimensionality
- low quality
 - missing values
 - outliers
 - constant or low variance values
 - null values
- feature engineering
 - temporal aggregation
 - capture the pattern of the functioning of the equipment

Features

What about the target variable?

- all observations have a target value that indicates the equipment condition
 - o it is not always easy to obtain; it may be dependent on the human expert
- some observations report the "normal" functioning of the equipment
 - it is difficult to collect every possible normal operating conditions
- none observations have information on the type of operational condition
 - every outlier can be considered a failure

What configures a failure?

- The abnormal functioning of an equipment represents an anomaly
 - few or none examples of such event on the systems past
- One cannot always rely on historical fault data
 - new versions are deployed in new conditions
- How can one discover new, unexpected issues?
 - o analysing "normal" behaviour, and detecting deviations
 - not every change in behaviour is a problem
- Inherent challenge to interpret discovered anomalies

Why is a difficult learning task?

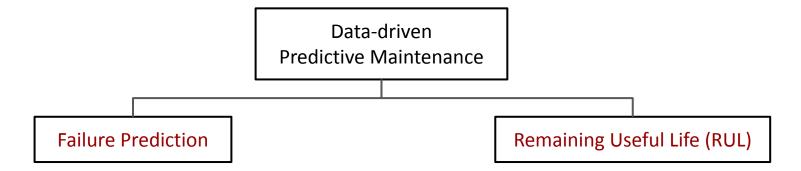
- Rare cases correspond to failures
- But these are the most relevant for the domain expert

- Imbalanced domains pose problems to standard learning tasks
- Imbalanced Domain Learning configures two assumptions
 - the representativeness of the cases on the training data is not uniform;
 - the underrepresented cases are the most relevant ones for the domain.

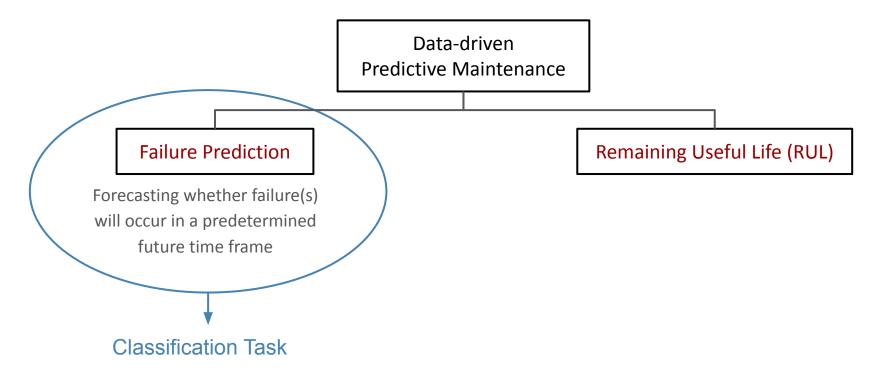
Why is a difficult learning task?

- Rare cases correspond to failures and are relevant
- Definition of failures is dependent on the application domain knowledge
- Define every possible normal / abnormal behaviour is hard.
- Boundary normal / abnormal behaviour is often not precise.
- Hard to distinguish real evolving failures from just random noise in data
- The abnormal behaviour will evolve with time.
- Inherent lack of known labeled failures for training/validation of models.

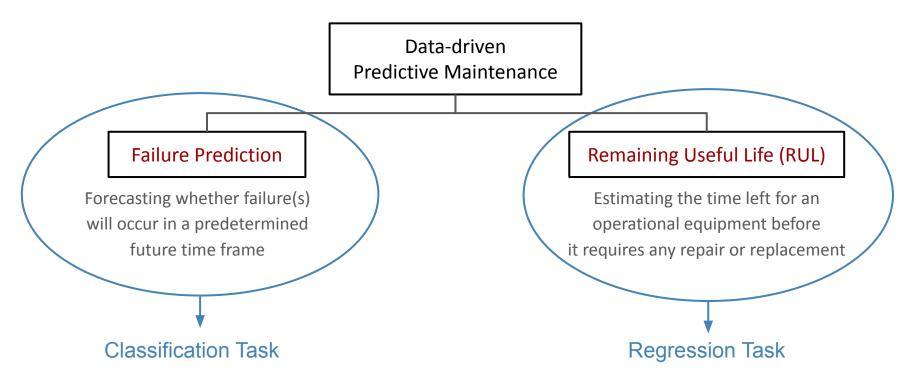
Predictive Learning Tasks



Predictive Learning Tasks



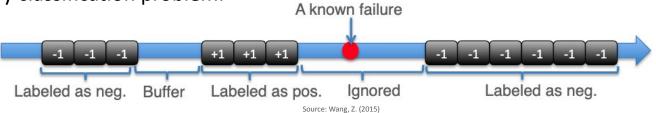
Predictive Learning Tasks



Goal:

Predict whether a failure will occur in a predetermined future time frame

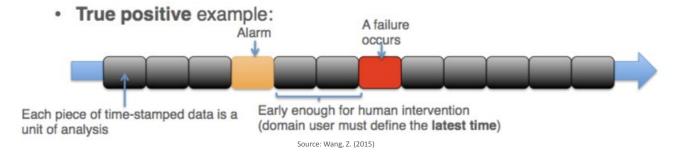
Binary classification problem.



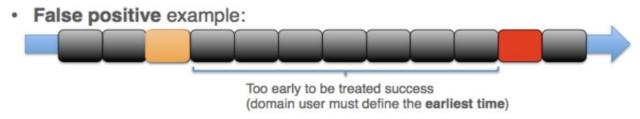
- An alarm is a positive prediction that a failure is about to happen.
- How effective is the prediction model?

	Alarm	No Alarm
Failure	TP	FN
Normal	FP	TN

What is a True Positive?



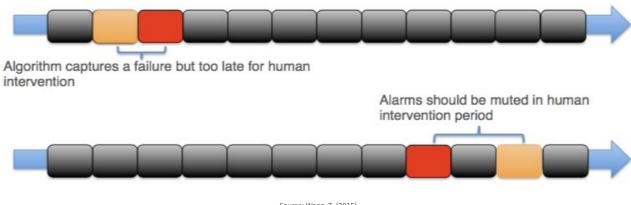
What is a False Positive?



Source: Wang, Z. (2015)

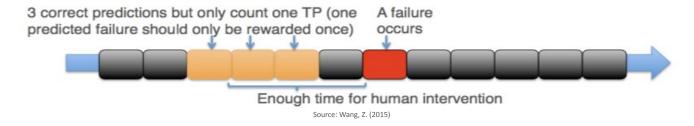
What is not a True Positive nor a False Positive?

Invalid prediction (neither TP nor FP):

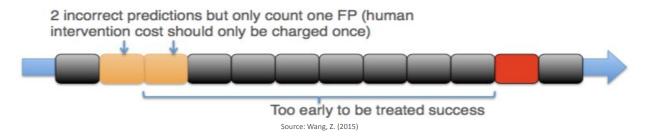


Source: Wang, Z. (2015)

What should count as one True Positive?



What should count as one False Positive?



- Standard performance metrics (e.g. accuracy, error rate)
 - assume that all instances are equally relevant for the model performance
- Good performance estimation in models
 - that perform well on normal (frequent) cases and bad on outlier (rare) cases.

Example

- Dataset with 1% of labelled failures;
- Model M predicts all cases as non-failures;
- M has a estimated accuracy of 99%;
- Yet, all the failures were missed!

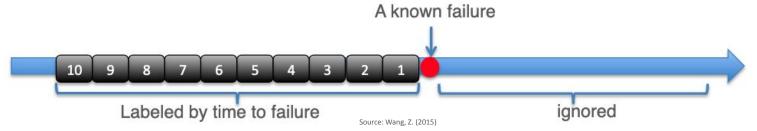
- The focus is on a small subset of cases (e.g. failures)
- The average is not a good idea
- Standard metrics influenced by the performance on the most common cases
 - i.e. normal functioning of equipment
- Not useful for failure prediction
- What other performance metrics can we use?

How effective is the failure prediction model?

- If we have domain information, we can use cost-sensitive metrics
 - What is the saving of capturing a failure in time to repair (TP)?
 - What is the inspection cost or the cost of a false alarm (FP)?
 - What is the replacement cost of the cost of missing a failure (FN)?
- If no domain information is available
 - e.g. Precision, Recall (TPR), False Alarm Rate (FNR), Impostor Pass Rate (FPR)
 - e.g. F-measure, AUC-ROC, AUC-PR

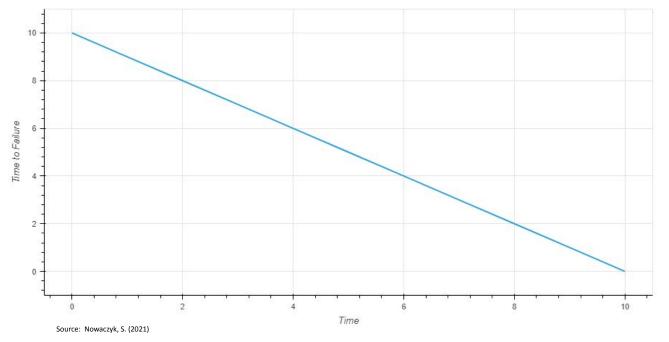
Goal:

- Predict the time left until the end of the useful life of the equipement
- Regression problem

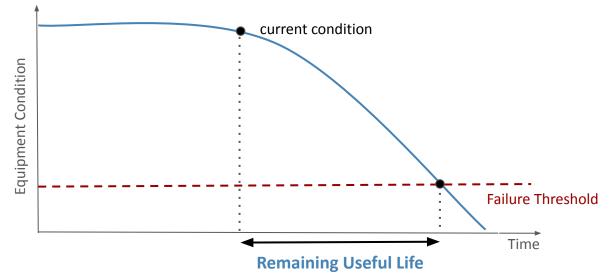


- The model uses more fine-grained information, not an abrupt change
 - e.g. gradual degradation of components

• What is the Time-to-Failure?



What is the shape of RUL curves?



- Failure Threshold is the minimum acceptable condition estimated by
 - End-of-Life (EoL), MeanTime-to-Failure (MTTF) or Mean Time Between Failure (MTBF)

How effective is the RUL model?

- Standard Error Metrics
 - e.g. MAE, MSE, RMSE, NMSE, NRMSE, R^{2,} MAPE
- But, once more, there is the question
 - are standard metrics appropriated for the requirements of this predictive task?
- Performance tends to be more critical as the system nears its end-of-life (EoL).

How effective is the RUL model?

- A simple aggregate of performance is not a fair representative of overall performance
- Performance at specific times relative to the EoL can be a reasonable alternative.
- Criticality of predictions at different stages may be ranked differently.
- A robust metric should be capable of making an assessment at all stages.
- Some of metrics aim to alleviate these issues in evaluating prognostic performance

How effective is the RUL model?

- Exponential Transformed Accuracy (ETA) Nectoux et al (2021)
 - different hazard severity for under- and over-estimate of RUL
 - over-estimates are more penalized as can lead to more severe damage
 - higher error, worst RUL prediction.
 - ETA varies between 0 and 1, higher is better
 - more than one version exists ...

How effective is the RUL model?

Exponential Transformed Accuracy (ETA)

$$A_i = \left\{ \begin{array}{ll} exp^{-ln(0.5).(Er_i/5)} & \text{if } Er_i \leq 0 \\ exp^{+ln(0.5).(Er_i/20)} & \text{if } Er_i > 0 \end{array} \right.$$

Source: Nectoux, P. et al. (2012)

How effective is the RUL model?

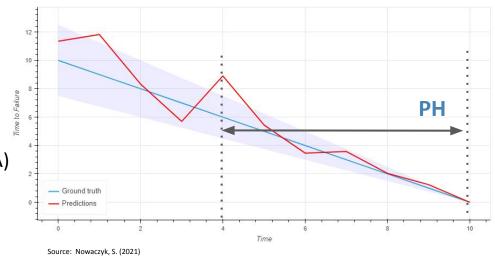
- Prognostic Horizon (PH)
 - test if the predictions satisfy a given prognostic horizon;
 - difference when the prediction results first satisfy a specified criterion and EoL
- The PH may be specified by an allowable error bound (α) around the true EoL.

$$PH^{\alpha} = i^{EoL} - i^{\alpha}$$
 where $i^{\alpha} = \min\{i : |y_i - f_i| \le \alpha\}$

• The choice of α depends on the estimate of time required to take a corrective action.

How effective is the RUL model?

- If the model passes the PH Test ...
- α - λ accuracy identifies if it performs:
 - within desired error margins (parameter α) of the actual RUL
 - at any given time instant (parameter λ)
 that may be of interest
- More metrics exist ...



How effective is the RUL model?

- Remember: the goal is to help users make decisions
- Knowing the actual time to failure facilitates making detailed plans
- However, it can also be "too much information"
- In many situations, a binary "replace now" signal is better
- One can, of course, always turn RUL into "yes/no"
- Not all predictions are equally important
 - o predictions closer to failure should be more precise
 - RUL over-estimation is more dangerous than under-estimation

Machine Learning Approaches

- Data acquisition
 - manual, expensive, but necessary
- Data preprocessing
 - o boring, time-consuming and difficult
- Building a model
 - mostly automatic and reliable
- Evaluation & Exploitation
 - largely domain/scenario-specific

Machine Learning Approaches

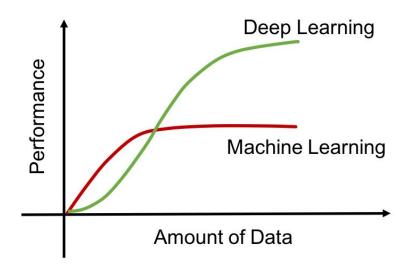
- Data acquisition
 - manual, expensive, but necessary
- Data preprocessing
 - boring, time-consuming and difficult
- Building a model
 - mostly automatic and reliable
- Evaluation & Exploitation
 - largely domain/scenario-specific

Deep Learning can help!

Machine Learning Approaches

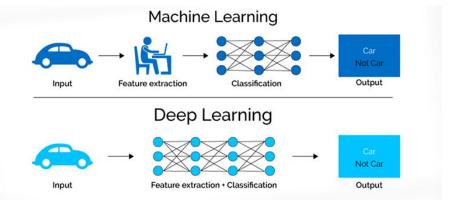
Why the need for Deep Learning?

- It allows for so called "end-to-end learning"
- Input raw data, arbitrarily complex, and get good results
- New paradigm: Big Data
- No need to "squeeze" every bit of useful clues from few data points
- Aim for unbounded complexity



Deep Learning Approaches

- Deep learning = Deep Neural Networks
 - many layers
 - millions of neurons
 - efficient optimisation



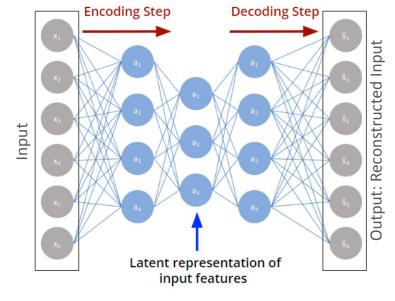
Source: ThinkWik

- Deep Neural Networks (DNNs)
 - o can be directly applied to the raw signal, without computing first ad hoc features
 - learns a hierarchical representation of data and "creates" complex features
 - feature engineering is automatic!

Deep Learning Approaches

Deep Auto-encoders

- widely used in PdM
- motivated by large amount of data produced by sensors
- it learns to reconstruct the input
- it spots deviations from the input
- deviations can constitute failures.

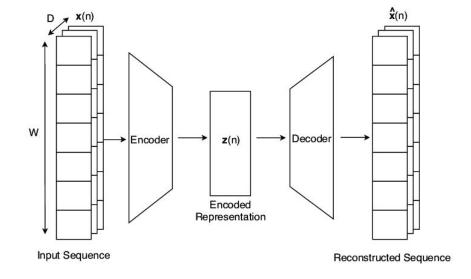


Source: DataScienceCentral

Deep Learning Approaches

Long Short-Term Memory (LTM) - AE

- also, widely used in PdM
- large amount of data produced by sensors
- real-time multivariate time series
- sequences that are not easily reconstructed are anomalous sequences
- anomalous sequences can represent failures



Source: ResearchGate

Conclusion and Discussion

Next steps

- Explainable Predictive Maintenance
 - All is today better than human experts in predicting faults
 - It, of course, depends on the data and the complexity of the equipment
 - Why is the problem occurring, and what can be done to mitigate it?
 - How to balance different objectives and come up with maintenance plan?
- Prescriptive Maintenance
 - Predictive Maintenance + Prescriptive Analytics
 - Integrates asset management and maintenance systems
 - Determine the best time and actions plan for the maintenance intervention
 - Maximize the useful file of the equipment

Conclusion and Discussion

- PdM is an extremely interesting application area for ML research
- Offers a wide spectrum of problems with varying difficulty
- Many ML problem formulations are applicable to a PdM setting...
 - supervised/unsupervised (semi-, self-supervised, reinforcement ...)
 - o active, transfer, online, federated, ensemble, concept drift, label noise, ...
 - feature extraction, selection and engineering
 - data fusion integrate data from multiple sources and types (images, audio, video)
 - multi-output learning
 - XAI explainable and interpretable models

References

- N. Davari, B. Veloso, G. A. Costa, P. M. Pereira, R. P. Ribeiro, J. Gama (2021): A Survey on Data-Driven Predictive Maintenance for the Railway Industry. Sensors 21(17): 5739
- M. S. Mouchaweh, J. Gama, R. P. Ribeiro, S. Nowaczyk, S. Pashami, B. Veloso (2021): Summer School on Data-Driven Predictive Maintenance for Industry 4.0. Co-located with DSAA 2021.
- Z. Wang (2015). Predictive maintenance (from a machine learning perspective). IEEE BigData 2015 Tutorial
- Y. Lei, N. Li, L. Guo, N. Li, T. Yan, J. Lin (2018): Machinery health prognostics: A systematic review from data acquisition to RUL prediction, Mechanical Systems and Signal Processing, Vol. 104, 2018, 799-834,
- P. Nectoux, Gouriveau R., Medjaher K., Ramasso E., Chebel-Morello B., Zerhouni N., Varnier C. (2012) PRONOSTIA: An experimental platform for bearings accelerated degradation tests. IEEE International Conference on Prognostics and Health Management, PHM'12.
- A. Saxena, J. Celaya, B. Saha, S. Saha, K. Goebel (2010): Metrics for offline evaluation of prognostic performance, Int. J. Prog. Health Manage. 1 (2010) 1–20.