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Abstract

While there are several ways to quantify peripheral nerve regeneration; the true measure of successful outcome is functional recovery.
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Functional tests are relatively easily conducted in human subjects; however it is more difficult in a laboratory animal. The laborato
excellent animal model of peripheral nerve injury and has been used extensively in the field of peripheral nerve research. Due to
interest in the rat as an experimental model, functional assays have been reported. In an effort to provide a resource to which inve
refer when considering the most appropriate functional assay for a given experiment, the authors have compiled and tabulated
functional tests applicable to various models of rat nerve injury.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Although the process of peripheral nerve regener
can be examined in a variety of ways ranging from ele
physiology to histomorphometry[78–81], the benchmar
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of successful reinnervation remains functional recovery.
Nerve fibers may regenerate without making appropriate
sensory/motor connections and axonal sprouting without
pruning may similarly overestimate the number of functional
connections. Thus, recovery of function does not necessarily
correlate with histologic and electrophysiologic evidence of
regeneration[49,114,65,16,29,1,94]. This stimulates interest
in the development and utilization of functional tests as out-
comes measures after nerve injury. Functional analysis may
offer the best and most unequivocal method to demonstrate
that a nerve has not only regenerated, but also made correct,
working end organ connections. Functional assessments
are easily conducted in human subjects, who can follow
commands and communicate with the investigators. Many
sensory and motor evaluation tools exist[48,95], as well
as assessments that rely on the patient to report their own
outcomes[96]. Unfortunately, these types of assessments
are not easily translated to laboratory animals.

The rat is an invaluable model in peripheral nerve research:
it is small, easily housed and handled, relatively inexpensive,
and large numbers of genetically identical animals are read-
ily available. Also, rat nerve fibers are similar in size and
morphology to human nerves. Rat nerves are large enough to
be readily manipulated with microsurgical techniques. Due
to the fact that the rat is so well suited for research, numer-
ous functional assays have been developed in order to better
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nerve innervates all of the finger flexors and the flexor carpi
radialis.

Rats possess prehensile forelimbs, forepaws, and digits.
They naturally pick up and manipulate their food when hunt-
ing and foraging[63,64]. The dexterity of rat digits has been
observed and quantified when seeking and manipulating var-
ious differently sized and shaped items[136]. Rats can also
be trained to perform a wide variety of reaching and grasp-
ing tasks ranging from very simple to quite complex. This
training can readily be achieved through operant condition-
ing with reward reinforcement.

Due to this dexterity and plasticity the rat is a useful
model to evaluate forelimb function. Even in the rat, however,
functional assessment of rat forelimb movement is complex,
involving many factors including the trajectory, reach, grip,
rate, frequency, and power of various upper limb motions
[134]. The tests and parameters used to evaluate forelimb
function in normal and nerve-injured animals are described
in Table 1. The relative importance of each of these parame-
ters is based, in part, on the function to be assayed, although
there is little doubt that all of these parameters are interrelated.
Careful dissection of all of these parameters, however, can be
cumbersome, expensive, and resource-intensive. They may
be unnecessary especially in less complex peripheral nerve
injuries, or when the same functional assay is standardized
between groups. The complexity of forelimb movement is
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unctional deficit or recovery. These include motor and
ory tests ranging from the exactingly quantitative to
ighly qualitative.

In an effort to provide a resource to which investigators
efer when seeking the most appropriate functional assa
uthors have compiled and tabulated the available funct

ests applicable to various models of rat nerve injury. T
ests have been categorized based on the anatomic
ssessed as well as the equipment required, and the t
ata yielded.

. Forelimb tests

Although the sciatic nerve is the most commonly stud
erve, and lower extremity function most often evaluate

s important to recognize that upper extremity tests of ne
ogical function have also been described. The rat forelim
nnervated by nerve branches from the brachial plexus in
ng the radial, ulnar, musculocutaneous and median ne
nlike in humans, however, where both the median and
erves are critical for grasp, in the rat it is the median n
hich is primarily involved in grasp[12]. The median nerv
nters the forelimb as a branch of the brachial plexus o
ating from the fifth cervical through the first thoracic ro
nd receives contributions from the posterior, medial,

ateral cords. It courses through the upper arm parallel t
rachial artery and then divides into a muscular branch

he volar interosseous nerve in the forearm[47]. The median
f

videnced by the multitude of assays that have been des
o examine the forelimb, and also by the intensive natu
ome of the more intricate assays. These exhaustive te
ell suited to detecting some of the more subtle nuanc

unctional disorders arising from specific central nervous
em lesions. However, in the peripheral nerve injury scen
t may be appropriate to utilize some of the less meticu
ssays which are not as descriptive, but simply measur
uantify the return of function. Upper extremity functio

ests have been relatively under-utilized. With continu
roblems of work-related upper extremity disorders th

ests offer the potential to better study the issues of repe
erve injury and provide more relevant outcomes mea
ents than do the sciatic functional indices.

. Hind limb tests

The rat sciatic nerve is the most commonly utilized ne
or evaluating nerve injury and regeneration and the g
st experience with functional outcome measuremen
eported with the sciatic nerve. The rat hind limb is prima
nnervated by the sciatic nerve and its branches. The s
erve is formed from the fusion of the fourth and fifth lu
ar spinal nerves, with some variable contributions from

hird lumbar spinal nerve[3]. The sciatic nerve then pass
hrough the sciatic notch and enters the hind limb. At
oint it gives off branches to the hip extensors and leg fle
nd continues its course beneath the gluteus medius
le into the thigh. In the mid-thigh the nerve trifurcates
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Table 1
Forelimb tests

Test Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Modification*

Reaching dish Rats reached between cage bars to obtain food from a
canary dish. Handedness was assessed based on reaching
preference

[100] – + M

Reaching tray* Rats were tested in a cage fitted with a glass tray with
multiple alcoves containing food pellets. Slots were
designed to admit only one limb and had an opening on the
bottom to force the rats to grasp and lift, rather than scrape
the pellets into the cage. Rats were rated on ratio of touches
to successful placement of the pellet in their mouths

[18] [17] – R M

Bracelet* The test was modified by restraining one limb with a
plaster/rubber bracelet that would not allow the limb to
reach through a slot; this allowed selection of reaching
limb

[140] [39,40,91,129,
131–133,138,139,
142,144]

– R M

Scrape bar* The test was modified by adding a bar at the front of the
tray to prevent rats from scraping pellets into the cage
without grasping them

[140] – R M

Spacer* The test was modified by adding a spacer so that pellets
would fall through the space if the rats tried to scrape
pellets into the cage without actually grasping them

[40] [39,91,129,131–133,
138–140,142,144]

– R M

Local anesthetic* The test was modified by using injection of local
anesthetic instead of a bracelet to restrain one limb

[40] – R M

Pellet array Rats were trained and subsequently tested in a cage with
21 spaces between the cage bars which led to slots
containing food pellets. Food pellets of seven different
sizes were used in randomly varying locations. Rats were
graded on latency of reaching, successful reaches, and
number and accuracy of grasp attempts via a computer
assisted analysis system

[145] – # M

Single-pellet
reaching shelf

Rats were trained to reach through a slot onto a shelf to
retrieve a food pellet steadied in one of two indentations on
the shelf. The indentations were placed at an oblique angle
to the opening so that the rat could only reach with the
chosen paw. Animals were videotaped and scored on
successful vs. failed reaches

[141] [83,88,91,120,129,
134–137,141,143]

V R M

Kinematic analysis Rats were filmed and analyzed based on frame by frame
analysis of selected components of reaching and grasping

[145] [19,141,142] V K M

Eshkol–Wachman
movement
notation
(EWMN)*

System of movement notation originally developed to
describe dance as a common standard of notation for all
styles. This system allows for the notation of any visually
discernable movement of the body. The notation system
shows the rate, size, direction, force, shape, etc., of body
part movement in relation to other parts of the body

[41] – K M

EWMN (five
component)*

Using a single pellet reaching box made of clear Plexiglas,
the rats were filmed from several perspectives while
performing a reaching task. The reaching movement was
subdivided in to five components which were analyzed
frame by frame and graded using Eshkol–Wachman
movement notation (EWMN)

[141] [142] V K M

EWMN (seven
component)*

Reach/grasping movements were further subdivided into
seven components and analyzed as above

[144] V K M

EWMN (10
component)*

Reach/grasping movements were further subdivided into
10 components and analyzed as above

[143] [83,88,91,129,
130,137,138]

V K M

EWMN (pasta) Reach/grasping movements while handling and eating
segments of pasta were subdivided into six components
and analyzed as above

[8] [86] V K M

Arpeggio* Rats were filmed in a single pellet reaching box, detailed
analysis of the hand movements were undertaken as the rat
felt for and located the food item and initiated grasp

[136] [83,134] V K SM

Postural
adjustments*

Rats were filmed during reaching, and their postural
adjustments were broken down into five components and
scored on each component

[91] [92,138] V K M
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Table 1 (Continued)

Test Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Grooming
assessment

Grooming was elicited by misting fur with water.
Grooming behavior was video recorded and analyzed
based on multiple parameters including order, structure
and yntactic chain completion

[11] V K M

Free grasping
analysis

Rats were filmed freely moving about their cage.
Spontaneous grasping was assessed by placing a food
pellet on the floor. The rat was then videotaped and
analyzed as it handled and ate the food

[91] [130] V K M

Pasta or other* Same as above except the rat was given various food items
(grapes, sunflower seeds, peanuts, pastas)

[134] [137] V K M

Predation* Same as above except the rat was analyzed catching,
handling and eating prey animals (crickets)

[63] V K M

Grasp test (with
hind limb)

Rats were tested on a grip strength apparatus consisting of
a ring anterior, and a bar posterior; both connected to
strain gauges. The animal grasped the anterior ring and
was pulled by the tail until its grip is broken; this force
was measured by the strain gauge. This procedure was
repeated for the hind limbs with the posteriorly located
bar (seeTable 2)

[90] F # M

Forepaw* Rats were held by the pelvis and lowered toward a
horizontal bar from above, they were rated on whether
they grasped the bar or not

[89] – + M

Horizontal bar* Rats’ forepaws were rested on a horizontal bar above a
flat surface and time to replacement of the forepaws on
the ground was recorded

[89] – T M

Vertical cling* Rats were made to hang from a wire grid by their
forepaws, the time to their release of grasp was measured

[89] – T M

Grid + balance* Rats were held by the tail over a wire grid attached to an
electronic balance and allowed to grasp the grid with a
forepaw and lifted until their grip was broken. The
reading at moment of release recorded. The other paw was
either restrained or denervated

[12] [4] F # M

Reduced
grid + tape +
median nerve*

Rats were suspended by the tail and allowed to grasp a
three wire grid attached to a balance. The weight at which
grip was broken was recorded. Tape was placed along the
bar to keep them from using their wrists to hold the bar.
The grid was reduced to three wires to prevent the rat
form walking on it. The contralateral median nerve was
divided to force the rat to use only the experimental limb

[48] F # M

Staircase test Rats were placed in an apparatus with an elevated
platform from which they could reach down the
successive steps of staircases on either side of them to
retrieve food pellets from recessed wells in each step.
They were graded on number of pellets retrieved

[93] [38] – # M

Staircase + EWMN* Rats were filmed in a clear Plexiglas reaching box fitted
with a raised platform with a staircase down along either
side. Rats reached down from the platform to retrieve
food pellets located in indentations on each successive
step. They were graded on the number of food pellets
retrieved in a 15 min session. Movement analysis using
EWMN was used to provide detailed analysis of the
reaching actions performed during this task

[146] V #K M

Pasta reaching Rats were filmed reaching through an aperture for a single
piece of pasta arranged in various orientations, or tested to
differentiate between pasta and similarly or differently
textured objects. Reach/grasp was assessed by force
transduction and video analysis of components of the
movement

[9] [7] VF #K SM

Pasta matrix* Similar to the above test except that rats reached for pasta
arranged in a 13× 20 row matrix. Reach/grasp was
assessed by EMWN rating, and the number and location
of the pieces of pasta retrieved

[8] V #K SM
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Table 1 (Continued)

Test Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Haptic
discrimination*

Rats reached through a slot and were presented a piece of
pasta and either a smooth non-food item, or a serrated
non-food item of equivalent diameter. They were rated on
their ability to correctly select the pasta

[7] – + SM

Conveyor belt Rats were trained to reach through a slot onto a moving
conveyor belt to retrieve food pellets. Animals were
graded on percent of pellets retrieved vs. percent omitted
and were analyzed for paw preference

[42] * R M

Rotating table Rats were trained in a skilled reaching task that consisted
of reaching through a slot to grasp a food pellet from a
rotating table (6 rpm) 1 cm away from cage. Rats were
graded based on the ratio of reaches to successful
retrievals

[69] – R M

Latch test Rats were trained to press a latch to open a box of food.
Handedness was assessed based on preferred paw

[100] [69] – + M

Force transducer
plate*

Rats were trained to reach into a chambers designed to
admit only the right or left limb and depress a plate
attached to a force transducer to receive a water reward.
Rate/number of attempts as well as force (including
sub-threshold attempts) were recorded by a computer

[101] FB # M

Force transducer
lever*

Rats were trained to press isometric levers located in a slot
outside of their cage, levers were positioned to force use
of only the left or right forelimb. The velocity, force, and
duration of lever pressing were recorded. Results were
correlated with implanted cortical microstimulation maps

[19] FB #C M

Vertical paw placing Rats were placed in a clear Plexiglas cylinder and
videotaped for 5 min, the number of paw contacts with the
wall were counted to assess whether one limb was favored

[7] V # M

Adhesive dot
removal

Rats had small adhesive dots affixed to the radial aspect of
their forelimbs; the time it took for them to contact and
remove the dot was recorded

[7] – T SM

Ladder rung walking Rats were trained to walk across a ladder (with sidewalls
to keep them from falling). Rung placement was varied so
that they could not learn the pattern. They were
videotaped and graded based on successful steps and
misses, as well as placement of their feet on the rungs

[87] V #K SM

Variable height shelf
test

Rats were trained to retrieve food pellets by reaching
through a slot onto a shelf that could be placed at different
heights. Rats were filmed from multiple angles including
from below using a reflectance technique to highlight the
contact points of their feet. Posture, foot placement, and
limb use at different reach heights was analyzed, as well
as successful reaches at each shelf height

[92] V #K M

Cortical mapping Rats were trained in a single pellet reaching box. They
were videotaped and analyzed based on successful
reaches as well as kinematic and movement notation
analysis. Differences between strains were compared and
correlated with cortical mapping done by cortical
microelectrode stimulation

[120] [19,62,69] VB KC M

Data—+: the parameter is measured as present or absent, R: the data is yielded as a ratio or percentage of normal, #: discreet numeric data points are produced, T:
temporal data are produced, C: central nervous system excitation recording, K: kinematic analysis. Equipment—V: video recording equipment, S: strain/force
recording device, C: computer, B: brain/CNS implanted recording electrodes, E: electrical stimulation equipment, *: other specialized equipment.

the peroneal, tibial, and sural branches; the peroneal nerve
subsequently innervates the tibialis anterior and the extensor
digitorum longus, while the tibial nerve supplies the plantar
flexors, toe flexors, and the tibialis posterior[47].

At constant speed, rats walk with a very consistent and
quantifiable gait and postural pattern. Their steps are regu-

lar and symmetrical, yielding highly reproducible pawprint
patterns. The rats’ stride is also quite regular with marked
consistency in values for paw placement in relationship to
the other limbs, length of stride, and time spent in the stance
and swing phases of gait[59]. Normal function of the rat
hind limb is essential to regular gait and posture and nerve
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lesions will affect the function of the leg, foot, and toes. Func-
tional deficit of the hind limb is apparent through changes in
the established patterns of paw placement and stepping[34],
changes in the phases of gait[126], as well as direct changes
in limb strength[67,75].

Because rat hind limb nerves are the most commonly
used model in peripheral nerve research, de Medinaceli et al.
[34,32] and then others developed numerous tests to assess
toe, foot, and leg function, as well as gait and posture char-
acteristics. These tests are described inTable 2. The validity
of many of these tests as a measure of neurologic recovery,
however, can be compromised by the development of mus-
cle fibrosis and joint stiffness[30]. The effects of motor and
sensory recovery can be affected by the adverse mechan-
ical sequelae of these processes. These issues have been
addressed, to some extent, by providing rats with meshed-
wire screens to provide a mechanism for physical therapy
[112]. However, it is unclear if physical therapy affects the
experimental results, or augments compensation for injury-
induced gait changes. The relevance of post-surgical changes
is also poorly controlled in most functional assays of recovery
following peripheral nerve or spinal cord injury. Immedi-
ately after surgery, pain, skin, muscle or bony damage and
the effects of post-operative analgesics can have a profound
effect on many parameters of functional recovery. Presum-
ably, these effects become less important the longer time rats
a dif-
f ting
a least
2 are
s ani-
m ould

prevent the detection of important changes occurring in the
acute post-operative period. The Bain–Mackinnon modifica-
tions of de Medinaceli’s functional indices which have been
based on multiple linear regressions can be used to demon-
strate neuromuscular recovery from specific nerve injuries
[6].

When footprints of the nerve-injured rat are assessed with
standardized functional indices (Fig. 1), the peroneal nerve
recovers full function, the tibial nerve has been shown to
recover 54% of baseline function, while the sciatic nerve
recovers only 41% of its function[55]. This discrepancy
is likely due to the higher density of fibers in the sciatic
nerve leading to a higher likelihood of motor–motor or
motor–sensory pathway mismatches during nerve regener-
ation. Of the sciatic nerve branches, the tibial nerve contains
the largest proportion of motor and sensory fibers and con-
tributes most significantly to lower extremity function. Thus,
a tibial nerve injury pattern is very similar to that obtained
from a sciatic nerve injury. Therefore, when choosing a
peripheral nerve injury model to study functional recovery
in the lower limb, the tibial nerve provides a dependable
unifasicular alternative to the sciatic nerve[55,45]. In com-
parison, peroneal nerve injury alone can recover completely
after transection injury and causes a loss of dorsiflexion and
eversion of the foot, and decreases toe spread[55]. More-
over, because the peroneal nerve remains intact with a tibial
n nkle
t t all
w -
a jury
t art-
m very

F the un i
N s); EIT first and fi
t periph
re from surgery. Ideally, the effects of surgery could be
erentiated from those of the nerve injury itself by evalua
nimals sustaining placebo operations, or by waiting at
–3 weeks after surgery before functional evaluations
tarted. We would recommend using placebo-operated
als as controls since delaying functional assessment w

ig. 1. Walking track analysis relates the injured, experimental limb to
IT = normal intermediate toe spread (between second and fourth toe

oes); NTS = normal toe spread. Functional indices specific to distinct
erve injury model the animal is able to dorsiflex the a
hus plant its foot without a foot drop. This assures tha
alking tracks are “measurable”[29,133]. With a total sci
tic nerve injury or with an isolated peroneal nerve in

he animal will drag the ankle until the anterior comp
ent musculature is innervated. As well, functional reco

injured, normal side. EPL = experimental print length; NPL = normal prnt length;
= experimental toe spread; ETS = experimental toe spread (betweenfth

eral nerve injuries are also listed.
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Table 2
Hind limb tests

Test (modification* ) Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Pawprint analysis Rats were placed in a Y-shaped runway and allowed to
explore freely. Paws were smeared with Vaseline and
powdered charcoal dust was used to demonstrate prints.
Stride length and variability (splay) were measured

[105] – # M

Fingerprint dust, video
recording, gait
analysis*

Rats had feet coated with grease and were then allowed to
walk down a corridor. Footprints were revealed with
fingerprint dust and analyzed. A lateral view of the rats
was videotaped as they walked; footfall sequence and gait
analysis was done by correlating the prints with the video

[59] V #K M

Toe spread* Rats were held by the hips with paws pressed slightly
toward the floor. Distances between first and fifth as well
as second and fourth digits were measured with callipers

[57] – # M

Walking tracks, sciatic
function index (SFI)*

Rats with unilateral sciatic nerve injuries were walked
down a narrow walkway with a dark shelter at the end.
The floor of the corridor was covered with a piece of x-ray
paper, and the rats hind feet were dipped in developer. The
reaction of the developer with the film created prints.
These prints were assessed for: distance to opposite foot
(TOF), print length (PL), toe spread between toes 1 and 5
(TS), and toe spread between toes 2 and 4 (IT). A formula
was developed to compare the injured to uninjured side,
yielding a combined sciatic function index (SFI) for these
values

[34] [49,31,33,35] – # M

Digital data input* Digital measuring of pawprints was assessed and
compared to conventional measuring methods

[32] [97] C # M

Modified SFI, tibial
function index (TFI),
peroneal function index
(PFI)*

Pawprints of rats with sciatic as well a solely peroneal or
tibial nerve injury were analyzed. PL, TS, IT were used to
develop function indices for tibial (TFI) and peroneal
(PFI) nerve injuries

[20] [6] – # M

Bromphenol blue* Compared walking track results with X-ray paper and
developer to those on copy paper impregnated with
bromphenol blue and water

[77] [97] – # M

Modified SFI, TFI, PFI* Prints from sciatic, tibial, and peroneal lesions were
analyzed based on PL, TS, IT, TOF, and print angle (PA).
Modified the SFI, TFI, and PFI were computed based on
multiple linear regression analysis of these factors

[6] C # M

SFI tutorial* Provides an example for SFI calculation and assessment
of one’s own SFI results

[15] – # M

Ink and paper, stride
analysis*

Walking track with ink and paper, stride length and stride
width were measured as well as consecutive print length
(S1) for gait symmetry. Different strains were compared

[99] – # M

Outward rotation angle* Walking track with dye, glue, water, and paper. Analyzed
toe spread (1–5), outward rotation angle of the foot (the
line between toes 1 and 5 and the straight line trajectory
of the rat), and print length

[148] – # M

Reflectance, walking
speed, computer
analysis*

Rats were filmed ventrally walking down a darkened
Plexiglas runway, via a 45◦ mirror below. The glass floor
of the runway was internally illuminated with fluorescent
light. The contact points of the paws with the glass would
scatter the light and were recorded as bright areas. The
forward speed of the rat as it crossed the runway was also
calculated by the time it took to break sequential infrared
beams across the runway. The data was sent to a
microcomputer and footfall patterns, foot pad contact
points, contact area, and speed were calculated

[25] [26,54] VC* # M

Long-term assessment* SFI, TFI, PFI were followed long term (1-year) for
evaluation of time of maximal functional recovery

[55] – # M

Sciatic stance index
(SSI)*

Rats were filmed from below in a Perspex enclosure;
footprints during the static stance phase of gait were
analyzed frame by frame. TS, ITS, and PL were measured
and used to create a sciatic stance index (SSI)

[14] [13] V # M
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Table 2 (Continued)

Test (modification* ) Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Video analysis* Rat walking tracks were videotaped; a frame by frame
analysis was used to calculate SFI

[76] [85] V # M

Toe out angle (TOA)* Rats were filmed from below using a mirror and
pawprints were analyzed from captured video images.
Toe out angle (TOA) was measured as the angle
between the direction of progression and the midline of
the foot. SFI was also calculated from these images and
correlated to TOA

[121] V # M

Toe twitch tension Rats were anaesthetized and their foot was secured to a
vertical bar with a rubber band. Needles or alligator clips
were used to deliver an electric current (2 Hz) across the
sciatic nerve to induce maximal muscular contraction. A
thread was attached to the distal phalanx of the third toe
and the force developed was measured on a strain gauge.
The injured side was compared to the uninjured limb

[67] F # M

Ankle stance angle Rats were filmed walking in a Perspex tunnel. Their legs
were shaved and marked at predefined points on the
lateral malleolus and fourth metatarsal; these points
were used to form two lines to calculate the ankle angle
during the stance phase of gait

[75] V # M

Modified reference
points*

Legs were shaved and marked at the tibia, lateral
malleolus, calcaneus, and fifth metatarsal and these
points were used to calculate ankle angle

[123] [122] V # M

Grasp test (hind limb) Animals are tested on a grip strength apparatus
consisting of a ring anterior, and a bar posterior; both
connected to strain gauges. The animal grasps the
posterior bar and is pulled by the tail until its grip is
broken; this force is measured by the strain gauge. This
procedure is also conducted with the forelimb on the
anteriorly located ring

[90] S # M

Grasping motion* Rat lifted by scruff and evaluated for the presence of the
ability to make a grasping motion with the hind limb

[74] – +

Tactile placing response
(TPR)

Rats were held and their toes were manually flexed so
that the dorsal surfaces were curled under in contact
with the walking surface, they were evaluated on their
ability to correctly reposition their toes

[115] [60] - + M

Hopping response Rats were placed with their hind paws only on a surface.
One hind leg was lifted, and the animal was moved
laterally until it either hopped or fell over

[115] [60] – + M

Extensor postural thrust Rats were held upright with their distal metatarsals and
toes on a balance, they were made to bear weight until
the heel contacted balance. This force was recorded

[115] [60] F # M

Inclined plane test Rats were placed transversely on a textured pad attached
to an angled board which could be raised and lowered to
increase the angle. They were raised until they could no
longer maintain their position for 5 s. This angle was
recorded

[103] [89,43] – # SM

Swimming test Rats were thrown into a tank of water with two exits.
The direction they swam in (left or right was recorded)

[100] – + M

Swimming test* Rats were placed in a swimming tank and videotaped as
they swam across to an inclined ramp. Graded on
number of fore and hind limb kicks, body angle, and
time to cross to the ramp

[46] V T#K M

Cortical
stimulation/treadmill

Rats were anesthetized and placed in a stereotactic
frame suspended over a moving treadmill. Stepping
patterns elicited by stimulating different portions of the
CNS were recorded

[104] B K M

BBB locomotor rating
scale

Rats were placed in a circular enclosure and encouraged
to locomote continuously. They were tested for 4–5 min
and examined by two separate examiners who then
scored them on a 21 point scale based on limb
movement, weight bearing, foot drop, etc.

[10] # K M
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Table 2 (Continued)

Test (modification* ) Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Gait analysis (mirror) Rats were recorded walking in a Perspex runway and
via a mirror angled at 45◦ beneath them, thus yielding a
split screen side and ventral view image. They were
evaluated based on quantitative gait parameters (stride
length, displacement, duration, stance vs. swing phase)
as well as kinematic reconstructions of paw excursion

[128] V K M

Gait stance duration* Rats were filmed from below and pawprints were
analyzed based on the amount of time spent in the
stance portion of the gait cycle. A ratio was established
with the uninjured side. This was compared to toe
spread as well as SFI. The effect of morphine analgesia
on this parameter was also measured to evaluate if
incisional pain would affect it

[126] [85] V R# M

Gait analysis* Rats were filmed walking in a clear Plexiglas tunnel.
Gait analysis was performed based on ankle angle, back
height, stride length, step length, and stance vs. swing
phase duration

[106] V T# M

Walking speed* Video analysis (lateral, ventral, and posterior views) of
rat gait was used to observe: (1) walking speed; (2) ratio
of stance to swing phase (injured vs. uninjured side); (3)
ratio of step length (injured vs. uninjured side); (4)
ankle joint angle (terminal stance and mid-swing); (5)
tail height from the floor at terminal stance; (6) tail
deviation from midline of the body axis at terminal
stance; (7) angle of body lean from horizontal through
the hip joints

[150] V R# M

Stance/swing ratio*

Step length ratio*

Ankle stance angle*

Tail height*

Tail deviation*

Midline deviation*

For legends seeTable 1.

can be measured with the print length factor ((experimen-
tal print length− normal print length)/normal print length)
making the more complex sciatic or tibial functional indices
unnecessary.

Another factor, which may confound analyses based on
parameters that assess rat walking tracks, is the issue of post-
surgical autotomy. When a limb is rendered insensate, rats
have the tendency to chew off the insensate foot depending
upon the extent of autotomy. This behavior may render the
limb useless to subsequent analysis of function. Not all rats
harbor this behavior and autotomy can be avoided by selec-
tion of the appropriate strain of animals. Lewis rats are noted
to have little to no self-mutilation after denervating injury,
while Brown–Norway and Sprague–Dawley rats are the most
notorious for this behavior[21].

4. Vibrissal tests

The facial nerve is commonly injured in humans in trauma
as well as in head and neck cancer surgery. This injury poses
a very challenging reconstructive dilemma based upon its
complex, multiple branched neuroanatomy, thus it is an area
of great clinical interest. The rat facial nerve emerges from

the skull through the stylomastoid foramen; it then supplies
multiple branches to the muscles of the face and neck, the
lacrimal gland, and sensory branches to the ear and tongue.
It possesses three major branches to the facial musculature,
the largest of which is the buccal branch, which supplies the
superficial muscles of the upper lip, nose, face, and provides
efferent innervation to the vibrissae (whiskers)[47]. Based
upon its caliber and length, the buccal branch has been the
principle branch of experimental interest. Afferent innerva-
tion of the vibrissae is derived from the infraorbital branch
of the maxillary division of the trigeminal nerve.

The rat vibrissal system provides an excellent model for
the study of facial nerve injury and facial reanimation, and
several types of analysis of vibrissal function have been
devised in order to quantify facial nerve function and recov-
ery from injury. Vibrissae are typically arranged in an array
five horizontal rows and seven vertical rows on the lateral
aspect of the snout, which has corresponding representation
on the somatosensory cortex in the central nervous system.
Normally rats use their vibrissae, whose piloerector mus-
cles are innervated by the buccal branch of the facial nerve,
in a characteristic whisking and sniffing behavior by which
they protract and retract the vibrissae in order to explore their
environment[127,82,22,70]. Studies describing and employ-
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Table 3
Vibrissal tests

Test (modification* ) Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Video analysis Cinematographic analysis was used to record and analyze
the sniffing behavior of rats. Protraction and retraction of
the vibrissae was assessed

[127] V # M

Twitch rate, EEG,
EMG*

Slow motion video analysis of vibrissal twitch rate during
normal sniffing was used to correlate twitches with EEG
and EMG recordings

[75] V # M

Air stream, licking
rate*

Rats were trained to lick a water source at a constant rate.
Once trained they were filmed to monitor changes in
licking rate from vibrissal stimulation. A vibrissa was
stimulated by a modulated air stream at various
frequencies which were calibrated to degree of vibrissal
deflection. Stimulation was also modulated to provide a
‘safe’ period and a ‘warning’ period after which an
electrical shock was administered. Rats were monitored
for cessation of licking in conjunction with the ‘warning’
frequency

[61] VE* + S

Quantitative
geometric
analysis*

Rats were initially filmed during free, spontaneous
whisking/sniffing behavior. Vibrissal movement
compared to facial reference points was analyzed in
two-dimensions. Parameters assessed were vibrissal
protraction and amplitude, whisking frequency, angular
velocity, and acceleration. The test was later modified by
restraining the animals

[51] [52,119] V # M

Cortical monitoring Responses to vibrissal manipulation and stimulation in
chemically paralyzed rats were monitored via cortical
electrodes. Vibrissae were manipulated with hand held
probes, as well as a mechanical vibrissal deflection
apparatus

[111] [110,108] B C S

Jump test Blinded rats were trained to jump across a variable
distance gap for a food reward. They would feel for the
other side of the gap with their vibrissae and would not
jump if it could not be palpated. They were scored on
their jump/no jump decisions

[61] – + S

Texture
discrimination*

Blinded rats (via eyelid suture) were trained to distinguish
between smooth and rough sandpaper that could only be
reached with their vibrissae and jump to a corresponding
goal area for a food reward. Once trained, rats were
graded on percent of correct choices

[50] – R S

Video analysis of
vibrissal function*

Rats were trained to feel across a gap using their vibrissae
to discriminate between smooth and rough plates. They
would jump across to the appropriate plate and be
rewarded with food. Video analysis of vibrissal velocity,
amplitude, and whisking pattern were obtained as the rats
performed this task (some vibrissae were trimmed to
optimize image clarity)

[23] V #K S

Qualitative
assessment

Following the initial nerve lesion, rats were observed for
return of vibrissal motor function until the vibrissae
returned to the level of the mouth, regained a posterior
orientation, and resumed a rhythmical whisking pattern.
The post-op times at which these events occurred were
noted

[2] – TK M

Angle of arcing Whisking movements post-facial nerve crush injury was
measured. Observations of the angle of vibrissal arcing
were measured, and recovery determined by the return of
symmetrical vibrissal whisking

[147] V R M

Laser array Rats’ heads and bodies were restrained to align vibrissae
with an optoelectronic laser array bilaterally. Whiskers
were marked with a foam marker and whisking parameters
were recorded as each whisker moved through the array
successively interrupting the laser beams. This data was
analyzed to determine whisking frequency, duration,
amplitude, velocity, and synchrony between the two sides

[44] C* # M
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Table 3 (Continued)

Test (modification* ) Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Aperture width Rats were trained to poke their nose into an infrared
sensor and feel the width of a surrounding aperture with
their vibrissae. Based on differences in the width of the
aperture they would receive a water reward by activating
another nose sensor either to their left or right. Rats were
rated on their ability to detect fine differences in aperture
width

[73] * + S

For legends seeTable 1.

ing measures of vibrissal function are detailed inTable 3.
Because the vibrissae comprise a sensitive sensory organ
as well as a mobile motor system, they can be assessed for
changes in either modality. They are well suited to both move-
ment analysis and tests of sensitivity and detection thresholds
(Fig. 2). While analysis of the vibrissal system is used to

assess reinnervation through the buccal branches of the facial
nerve[37,119], reinnervation of the orbicularis oculi through
the zygomatic branches has been evaluated using a blink
reflex described by Terzis and colleagues[113,116–118]. The
authors show that the orbicularis oculi sphincter is dually
innervated in both rats and humans, thus enabling a reliable

Table 4
Sensory tests

Test Description Primary
source

Additional
references

Equipment Data Sensory–
motor

Modification*

Nociceptive pressure
stimulation

Rat’s pain threshold to pressure was measured using a
pneumatic pressure recording device. Pain threshold
was described as the pressure at which the rat began to
struggle

[102] [56] F # S

von Frey hair test* Rats were placed in a wire mesh bottomed cage. Feet
were tested by applying von Frey hairs of increasing
size to the plantar surface of the foot. The test was
scored as the ratio of withdrawals to stimuli

[68] [4,24] * R SM

Forceps* The rat’s withdrawal to pressure on first and fifth toe
was tested with calibrated forceps attached to a recorder
that recorded the intensity and duration of the stimulus

[115] [74,60] F # SM

Vocalization* Pressure was applied to the rat’s hind paw with an
analgesimeter until the rat vocalized; the pressure
measurement at this time was recorded

[4] F # S

Nociceptive electric
stimulation

Electric current (0.1 mA) was applied to several points
on the rat’s foot pads and withdrawal response was

[28] E + SM
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eated probe* The rat’s withdrawal latency to a hot probe on the
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ail caloric test Rats had their tails placed in hot water and rate of
discharge of dorsal horn cells was recorded

ithdrawal latency* Rats had their tails placed in hot water and the time u
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yotactic reflexes Myotactic reflexes were elicited by tapping over the
tendon or muscle belly with a pediatric plexor;
evaluated as present or absent

utonomic function Rats’ autonomic response was monitored through
changes in vasomotor tone by measuring skin
temperature at the base of the heel
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Fig. 2. Vibrissal function is determined by comparing protraction and retrac-
tion between experimental and normal sides. A line connecting the medial
canthi serves as a consistent landmark, and a perpendicular to this line marks
the frontal-occipital midline. The angle formed between the midline and the
mid-point of the vibrissae determines the angles of protraction and retraction
and enables comparison between sides. Figure adapted from Tomov et al.
[119].

rodent model for studying nerve grafting procedures for re-
establishing blink in facial nerve-injured animals.

5. Sensory tests

Sensory perception is also an important measure to con-
sider in recovery from nerve injury. The return of sensory
nerve function allows for protective sensibility and propri-
oception. Also, pathologic syndromes of increased sensibil-
ity (tactile allodynia, thermal hyperalgesia) may occur after
peripheral nerve lesions[24]. In order to better address ques-
tions about the function of the sensory nervous system in
an experimental setting, various tests to quantify nociceptive
function have been developed for rats. These tests are listed
in Table 4.

It is very difficult to describe apure sensory test. Since
the animals cannot express sensory perception, the majority
of these tests rely on a motor response to a sensory stimulus.
Thus, it becomes impossible to separate sensory and motor
function in most of these assays. This motor dependency can
be circumvented if the response to the stimulus can be elicited
from and area of the body which was unaffected by the initial
intervention being tested, such as in the Nociceptive pressure
stimulation test[102] or the vocalization test[4] (Table 4).
Pure sensory function can also be determined if the animal
c tably
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pain. The affected foot initially demonstrates painful edema
and hyperalgesic responses to modestly noxious stimuli
are noticed as early as eight hours later and last for four
weeks. The application of free radical scavengers reduces
the observed pain response in these animals as measured by
hindpaw withdrawal to von Frey filament stimulation[27].

6. Comparisons and reviews

Several reports have compared specific functional tests’
results, reliability, and reproducibility in order to determine
which tests are better suited to detect differences in certain
parameters. Other studies have compared the data from func-
tional tests with electrophysiological and histologic assays in
an attempt to correlate specific histologic and nerve conduc-
tion findings with a certain level of functional recovery. A
summary of these reports is listed inTable 5. These compar-
isons of different functional assay are useful in determining
which of a group of similar tests will provide the most reliable
data for a specific parameter of interest, and are invaluable
to investigators in choosing between specific functional tests
for an experiment.

7. Conclusions
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model of nociceptive peripheral neuropathy following repeated cis-
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