
U

F

i
p
t

Neuroscience 211 (2012) 77–82
REVIEW
ANIMAL MODELS OF MULTIPLE SYSTEM ATROPHY

d
f
y
a
f

c
p
s
t
p
n
1
p
a
c
s
p
t
l
2

P.-O. FERNAGUTa,b* AND F. TISONa,b

aUniversité de Bordeaux, Institut des Maladies Neurodégénératives,
MR 5293, F-33000 Bordeaux, France

bCNRS, Institut des Maladies Neurodégénératives, UMR 5293,
-33000 Bordeaux, France

Abstract—Multiple system atrophy (MSA) is a sporadic adult-
onset neurodegenerative disorder clinically characterized by
a variable combination of dysautonomia, levodopa-unre-
sponsive parkinsonian and cerebellar symptoms. Neurode-
generation in MSA occurs in the substantia nigra, putamen,
inferior olive, pontine and brainstem nuclei, as well as inter-
mediolateral cell column of the spinal cord. MSA is recog-
nized as a synucleinopathy due to the accumulation of insol-
uble alpha-synuclein in oligodendroglial cytoplasmic inclu-
sions. Several animal models have been developed in order
to reproduce various clinical and pathological features of
MSA. Using “double toxin–double lesion” or “single toxin–
double lesion”, neurotoxin-based models were designed in
rats, mice and non-human primates to reproduce the neuro-
pathology of MSA in the nigrostriatal system while gene-
based models were developed in mice to reproduce the ac-
cumulation of insoluble alpha-synuclein in oligodendrocytes.
Both approaches have then been merged to create optimized,
dual-hit models. This review describes the different animal
models of MSA, their respective advantages and limitations
and their usefulness to decipher the pathophysiology of MSA
then to define efficient symptomatic and disease-modifying
therapies.

This article is part of a Special Issue entitled: Neurosci-
ence Disease Models. © 2012 IBRO. Published by Elsevier
Ltd. All rights reserved.
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77
MULTIPLE SYSTEM ATROPHY: DEFINITION,
CLINICAL AND NEUROPATHOLOGICAL

FEATURES

Multiple system atrophy (MSA) is a sporadic adult-onset
neurodegenerative disorder of unknown aetiology affecting
four to five cases per 100,000 habitants (Tison et al.,
2000). Clinically, MSA includes a variable combination of
dysautonomia, parkinsonian and cerebellar symptoms.
Two main forms of MSA are recognized depending on the
predominance of a parkinsonian or cerebellar syndrome:
MSA-P (parkinsonian form, formerly known as striatonigral
degeneration) and MSA-C (cerebellar form, formerly
known as olivopontocerebellar atrophy) (Gilman et al.,
1999). In addition, dysautonomia is present in both sub-
types of MSA and includes urinary incontinence, respira-
tory failure, dysarthria, dysphagia and orthostatic hypoten-
sion (Gilman et al., 2008). The initial clinical manifestations
of MSA can substantially differ among patients, and auto-
nomic symptoms may precede motor signs (Lipp et al.,
2009). Median life expectancy after disease onset is less
than 9 years (Schrag et al., 2008) and no treatment is
currently available to delay disease progression. Clinical
management of dysautonomia includes the use of flu-
dorcortisone for orthostatic hypotension and anticholin-
ergic drugs for urinary dysfunction (Flabeau et al., 2010).
L-DOPA is the first-line treatment for parkinsonism but
opaminergic responsiveness is poor and transitory, af-
ording only 20–30% improvement of symptoms over 2–3
ears (Hughes et al., 1992; Tison et al., 1995). In the
bsence of specific treatment, physiotherapy is beneficial
or the management of ataxia and postural impairments.

In the nigrostriatal system, neuronal loss in MSA in-
ludes a progressive degeneration of the substantia nigra
ars compacta (SNc) and of the sensorimotor striatum in
omatotopically related areas. The loss of dopaminergic
erminals affects principally the dorsolateral part of the
osterior putamen, where the loss of striatal medium spiny
eurons is the most pronounced (Fearnley and Lees,
990). In the olivopontocerebellar system, neuronal loss
redominates in the inferior olive and pontine nuclei, and to
lesser extent in the vermis where the loss of Purkinje

ells is more pronounced compared with cerebellar hemi-
pheres (Wenning et al., 1996b). In the brainstem, neuro-
athological alterations include depletion of chemosensi-
ive respiratory neurons (Benarroch et al., 2007), neuronal
oss in the pre-Bötzinger complex (Schwarzacher et al.,
011), depletion of serotonergic neurons in the raphé ob-

curus, raphé pallidus and ventrolateral medulla (Tada et
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al., 2009). In the spinal cord, neuronal loss affects inter-
mediolateral column cells (Kennedy and Duchen, 1985).

In addition to neuronal loss, MSA is characterised by
he presence of argyrophilic glial cytoplasmic inclusions
GCIs). Like Lewy bodies in Parkinson’s disease, these
lial inclusions are the cytopathological hallmark of the
isease. Following the identification of alpha-synuclein in
ewy bodies and GCIs (Spillantini et al., 1998), MSA,
arkinson’s disease and dementia with Lewy body are
ow recognized as a unique family of neurodegenerative
isorders designed as “synucleinopathies”. Since alpha-
ynuclein is not expressed in oligodendrocytes in normal
rain or in MSA (Miller et al., 2005), the origin of alpha-
ynuclein in GCIs is not a result of de novo expression but
s rather attributable to an ectopic occurrence. Recent
tudies demonstrating cell-to-cell transmission of alpha-
ynuclein (Desplats et al., 2009) support the hypothesis
hat oligodendroglial accumulation of alpha-synuclein in
SA could arise from endocytosis of alpha-synuclein se-

reted by nearby neurons.
Even though MSA is a sporadic neurodegenerative

isorder, several lines of evidence points to a genetic
ontribution to the pathogenesis of the disease. A recent
enome-wide association study indicates that genetic vari-
bility at the alpha-synuclein locus is associated with an

ncreased risk of MSA (Scholz et al., 2009). In addition,
ossible or probable MSA have been described in first
egree relatives in several families and an increased inci-
ence of parkinsonism has been reported in first degree
elatives of MSA patients, further suggesting a genetic
ontribution (Wullner et al., 2004; Hara et al., 2007; Vidal et
l., 2010).

The development of experimental models of MSA is a
ecessary step towards the understanding of the patho-
hysiology of this devastating disease. Because symptom-
tic treatments are of limited and/or transient efficacy and
o disease-modifying therapy is currently available, such
odels that best recapitulate various aspects of MSA are
lso mandatory for the evaluation of therapeutic strate-
ies. We will first describe neurotoxin-based models of
SA that have been developed in rodents and non-
uman primates. Using stereotaxic or systemic injec-
ions of neurotoxins, these models are based on a com-
ined destruction of both sides of the nigrostriatal axis
either sequentially or simultaneously) in order to reca-
itulate the L-DOPA unresponsive parkinsonism occur-

ring in the human disease. We will then review aetio-
logical (gene-based) models developed to investigate
the underlying mechanisms of neurodegeneration due to
oligodendroglial and neuronal dysfunction. Following the
recognition of MSA as a synucleinopathy, these models
are based on the targeted expression of human alpha-
synuclein in oligodendrocytes in order to recapitulate the
cytopathological hallmark of the disease. The final part
of this review will present the latest generation of MSA
models that integrate the use of neurotoxins in geneti-

cally engineered mice. m
STEREOTAXIC RAT MODELS

Parkinsonism is the main source of motor disability in MSA
and is present in 90% of cases during the course of the
disease (Tison et al., 1995). In addition, dopaminergic
responsiveness is poor and temporary (Hughes et al.,
1992). Toxin-based models were thus initially developed to
reproduce the anatomical lesions underlying L-DOPA un-
esponsive parkinsonsism occurring in MSA. Neurotoxins
sed to develop animal models of Parkinson’s and Hun-
ington’s disease were used to induce a sequential or
imultaneous degeneration of both components of the ni-
rostriatal pathway (Table 1). This was first achieved by a
double toxin–double lesion” approach in rats, in which two
eurotoxins are used to induce the degeneration of nigral
nd striatal neurons. Using 6-hydroxydopamine (6-OHDA)
nd quinolinic acid (QA) injected sequentially (3–4 weeks
part) in the median forebrain bundle (MFB) and the stria-
um respectively, the first model demonstrated the aboli-
ion of drug-induced rotational behaviour in double le-
ioned animals and a positive effect of fetal allografts
Wenning et al., 1996a). To explore the effects of the
esioning sequence (e.g. nigral first vs. striatal first), a
ubsequent study investigated the behavioural conse-
uences of intrastriatal injection of QA, preceded or fol-

owed (8 weeks) by an injection of 6-OHDA in the MFB
Scherfler et al., 2000). Prior striatal dopaminergic dener-
ation with 6-OHDA was found to decrease the neurotoxic
ffects of QA while prior striatal lesioning with QA did not
ffect 6-OHDA-induced nigral degeneration. At the behav-

oural level, bilateral stepping deficits were observed in
ouble lesioned animals (Scherfler et al., 2000). Using
imultaneous intrastriatal injection of 6-OHDA and QA in
n attempt to overcome the reduced neuronal vulnerability
ue to dopamine depletion observed in previous rat mod-
ls, this strategy resulted in an exacerbation of QA-in-
uced striatal damage together with a slight reduction of
-OHDA-induced dopaminergic loss. Abolition of rotational
ehaviour and additional ipsilateral deficits were observed

n rats injected with both neurotoxins (Ghorayeb et al.,
001).

To prevent interactions between both sites of degen-
ration and the protective effect induced by a first nigral

esion, a “single toxin–double lesion” strategy was devel-
ped. In this case, a single neurotoxin is injected in the
triatum to induce a combined degeneration of nigral and
triatal neurons. This was performed using either the suc-
inate dehydrogenase inhibitor 3-nitropropionic acid (3-
P) or the mitochondrial complex I inhibitor 1-methyl-4-
henylpyridinium ion (MPP�) injected in the striatum
Waldner et al., 2001; Ghorayeb et al., 2002a). Both 3-NP
nd MPP� induced bilateral motor deficits associated with
40% neuronal loss in the substantia nigra and 47%

MPP�) to 76% (3-NP) striatal loss. All stereotaxic rat
odels have enabled to produce a dopamine unrespon-

ive motor phenotype, as shown with the abolition of apo-

orphine and/or amphetamine rotations. The striatal le-
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sion not only suppressed the behavioural response to
dopaminergic drugs but also worsened behavioural deficits
with the induction of bilateral sensorimotor impairments.
The combined striatal and nigral degeneration does not
simply result in superimposed striatal and nigral deficits but
in a specific motor disorder. In addition, the reduced vul-
nerability of striatal medium spiny neurons observed fol-
lowing dopamine denervation is in accordance with a role
for dopamine as a positive modulator of striatal neurode-
generation (Reynolds et al., 1998; Fernagut et al., 2002a).
Based on the results obtained with the different stereotaxic
rat models, it can be estimated that 25% of striatal degen-
eration is sufficient to abolish the dopaminergic response
and induce a significant worsening of the behavioural phe-
notype. Despite this dopaminergic unresponsive motor
phenotype, L-DOPA can still induce orolingual dyskinesia
Stefanova et al., 2004), as it is the case in the human
isease (Hughes et al., 1992). The main advantage of
tereotaxic rat models is the possibility to obtain various
egrees of striatal and nigral degeneration that reproduce
arious aspects of MSA neuropathology in the nigrostriatal
ystem, from early stages to the most advanced phases of
he disease. Even though the limitation of these models is
he fact that they only recapitulate a restricted part of MSA
europathology and symptomatology without reproducing
he widespread lesions outside the basal ganglia, they
ave a still underused potential to evaluate the antiparkin-

Table 1. Overview of animal models of MSA

Nigral
cell loss

Striatal
cell loss

tereotaxic rat models
6-OHDA followed by QA �90% 56%
QA followed by 6-OHDA �90% 85%
QA�6-OHDA 15% 27%

3-NP 45% 76%
MPP� 48% 47%

Systemic models
Non-human primate

MPTP followed by 3-NP 70–90% 35–45%

Mouse
MPTP followed by 3-NP 44% 43%
3-NP followed by MPTP 26% 54%
MPTP�3-NP 26% 36%

T transgenic mouse models (oligodendroglial
expression of human wild-type alpha-
synuclein)

PLP promoter 23% —
MBP promoter �40% �40%
CNP promoter — —

Dual-hit mouse models
PLP�3-NP �50% �50%
MBP�3-NP �70% 60%

3-NP, 3-nitropropionic acid; 6-OHDA, 6-hydroxydopamine; CNP, 2’
-methyl-4-phenylpyridinium ion; MPTP, 1-methyl-4-phenyl-1,2,3,6-tet
onian potential of non-dopaminergic drugs. fi
SYSTEMIC MODELS

Using sub-chronic and chronic intoxication regimen, sys-
temic neurotoxins allow inducing a progressive neuronal
dysfunction. Such a dynamic approach thus take into ac-
count the temporal dimension of neurodegeneration occur-
ring in the human disease. Systemic administration of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
3-NP were thus used in mice and non-human primates to
reproduce the core pathology of MSA in the nigrostriatal
system (Table 1). In non-human primates, chronic admin-
istration of 3-NP in MPTP-treated monkeys provoked a
progressive aggravation of parkinsonism. The subsequent
appearance of a 3-NP induced hind limb dystonia and
striatal degeneration were then associated with an abrupt
deterioration of the motor status together with a loss of
L-DOPA response and an abolition of MPTP-induced hy-
eractivity of the subthalamic nucleus (Ghorayeb et al.,
000, 2002b; Fernagut et al., 2010). In mice, systemic
dministration of 3-NP induces a distinct motor syndrome
hind limb dystonia and clasping, postural impairments)
ssociated with neurodegeneration in the lateral part of the
triatum and a moderate loss of dopaminergic neurons
Fernagut et al., 2002b). Sequential regimens of MPTP
nd 3-NP administrations (MPTP followed by 3-NP or
-NP followed by MPTP) enabled to obtain a significant

oss of nigral and striatal neurons. Administration of MPTP

ur Reference

l paw reaching deficit (Wenning et al., 1996)
l paw reaching deficit (Scherfler et al., 2000)
n of drug-induced rotations (Ghorayeb et al., 2001)
l paw reaching deficit
l paw reaching deficit (Waldner et al., 2001)
n of drug-induced rotations (Ghorayeb et al., 2002a)
l stepping deficits

pa unresponsive parkinsonism,
ient hind limb dystonia

(Ghorayeb et al., 2000; Ghorayeb
et al., 2002b)

otor activity (Stefanova et al., 2003)

otor activity, 2rotarod, 2pole (Fernagut et al., 2004)

imb stride length (Kahle et al., 2002)
d and pole test (Shults et al., 2005)
d (Yazawa et al., 2005)

otor activity, pole test (Stefanova et al., 2005)
test (Ubhi et al., 2009)

nucleotide 3’-phosphodiesterase; MBP, myelin basic protein; MPP�,
yridine; PLP, proteolipid; QA, quinolinic acid.
Behavio

Bilatera
Bilatera
Abolitio
Bilatera
Bilatera
Abolitio
Bilatera

Levodo
trans

2locom

2locom
test

2hindl
2rotaro
2rotaro

2locom
2 pole

,3’-cyclic
rst reduced the striatal vulnerability to 3-NP while prior
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administration of 3-NP reduced the vulnerability of nigral
dopaminergic neurons to MPTP. Behavioural deficits were
more pronounced when 3-NP was administered first and
the alterations in locomotor activity correlated with the loss
of striatal DARPP-32 neurons (Stefanova et al., 2003).
Contrary to the reduced neuronal vulnerability observed
using sequential intoxication regimens, the combined ad-
ministration of MPTP and 3-NP over 9 days resulted in an
increased magnitude and duration of the motor syndrome
and alteration of sensorimotor performances compared
with 3-NP or MPTP alone. Striatal damage, (neuronal loss
and astrogliosis) was also significantly enhanced in ani-
mals receiving both neurotoxins (Fernagut et al., 2004).
Similar to the stereotaxic rat models, systemic models only
reproduce a pathological spectrum restricted to the nigro-
striatal pathway. Nevertheless, these models have paved
the way to the development of dual-hit models.

GENE-BASED MODELS

The identification of alpha-synuclein in GCIs and the sub-
sequent recognition of MSA as a synucleinopathy provided
a molecular lead to investigate the pathophysiological ba-
sis of the disease. Several transgenic mouse models ex-
pressing human wild-type alpha-synuclein under the con-
trol of oligodendroglial specific promoters were thus devel-
oped to reproduce the cytopathological hallmark of MSA
(Table 1). Targeted expression of human wild-type alpha-
synuclein in oligodendrocytes was achieved under the
control of the proteolipid (PLP) promoter (Kahle et al.,
2002), the MBP promoter (Shults et al., 2005) or the 2=,3=-
cyclic nucleotide 3=-phosphodiesterase (CNP) promoter
(Yazawa et al., 2005). All three transgenic lines recapitu-
late the oligodendroglial accumulation of insoluble alpha-
synuclein. In addition, hyperphosphorylation at serine 129
was shown in PLP- and MBP-driven alpha-synuclein
(Kahle et al., 2002; Shults et al., 2005). All three lines have
been shown to display various degrees of motor impair-
ments such as a progressive reduction of rotarod perfor-
mances (Yazawa et al., 2005), impairments of rotarod and
pole test performances (Shults et al., 2005) or reduced
hind limb stride length (Stefanova et al., 2005). Non-motor
symptoms may also be recapitulated as shown with the
olfactory dysfunction found in MBP-driven alpha-synuclein
mice (Ubhi et al., 2010). Neuropathological investigations
in the three transgenic models revealed that oligodendro-
glial expression of alpha-synuclein led to various ultra-
structural and morphological alterations including myelin
loss and axonal atrophy. A moderate loss of dopaminergic
neurons in the substantia nigra was observed in mice
expressing alpha-synuclein under the control of the PLP
promoter (Stefanova et al., 2005) while MBP-driven alpha-
synuclein induced a loss of nigral dopaminergic neurons,
striatal tyrosine hydroxylase-positive fibres and striatal
neurons (Shults et al., 2005; Ubhi et al., 2009). Spontane-
ous neuronal loss in the cerebellum and pontine nuclei has
not been reported in any of these transgenic mouse mod-
els of MSA. Results obtained during the generation of

several lines of MBP-driven alpha-synuclein mice strongly
suggest that the levels of oligodendroglial expression have
a significant effect on the behavioural and pathological
outcomes (Shults et al., 2005). Whether the differences
observed between the three lines are mainly due to gene
dosage has not been directly assessed. If the level of
oligodendroglial expression of alpha-synuclein is critical to
induce behavioural impairments and neurodegeneration,
crossing two of the existing transgenic lines together could
be a simple strategy to increase it. MBP-driven oligoden-
droglial expression of alpha-synuclein was also found to
alter the expression of several neurotrophic factors includ-
ing insulin-like growth factor-1 and glial-derived neu-
rotrophic factor, thus suggesting that a deficit in oligoden-
droglial neurotrophic support may be a key element in the
disease process (Ubhi et al., 2010). In addition, recent
evidence suggests that the oligodendroglial expression of
alpha-synuclein may also recapitulate the degeneration of
some brainstem nuclei involved in autonomic functions
(Stemberger et al., 2010). However, autonomic functions
(cardiac, respiratory, urinary. . .) have not yet been ex-
plored in genetic mouse models of MSA.

Gene-based models have the strong advantage to re-
capitulate the cytopathological hallmark of MSA and have
proven useful to elucidate pathogenic mechanisms linked
with the oligodendroglial accumulation of alpha-synuclein.
However, the extent of neurodegeneration remains mod-
est compared with toxin-based models or with the human
disease. Since these models are based on the constitutive
expression of alpha-synuclein in oligodendrocytes, it re-
mains to be determined if the conditional expression of
alpha-synuclein in adult oligodendrocytes could better rep-
licate the human disease.

DUAL-HIT MODELS

All models have intrinsic limitations. Toxin-based models
recapitulate the pattern and extent of neuronal loss in the
nigrostriatal system but fail to reproduce lesions outside
the basal ganglia and the accumulation of insoluble alpha-
synuclein in oligodendrocytes. On the other hand, trans-
genic models do reproduce the oligodendroglial accumu-
lation of alpha-synuclein but do not recapitulate the full
pattern and extent of neurodegeneration occurring in the
human disease. To circumvent these limitations, the sys-
temic toxin-based approach developed in mouse with
3-NP (Fernagut et al., 2002b) was then applied to trans-
genic mice expressing human wild-type alpha-synuclein in
oligodendrocytes (dual-hit model, Table 1). Administration
of 3-NP in mice expressing human wild-type alpha-sy-
nuclein under the control of the PLP promoter enabled to
induce widespread neurodegeneration in the nigrostriatal
and olivopontocerebellar systems together with enhanced
motor deficits (Stefanova et al., 2005). Exacerbation of
3-NP-induced motor deficits and neurodegeneration, to-
gether with increased oxidative modifications of alpha-
synuclein were also demonstrated in mice expressing hu-
man wild-type alpha-synuclein under the control of the
MBP promoter (Ubhi et al., 2009). The dual-hit approach

incorporates the advantages of the systemic and gene-
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based models, thus providing robust neurodegeneration
together with oligodendroglial alpha-synuclein pathology.
Therefore, dual-hit models represent the best experimental
models of MSA available to date.

RELEVANCE TO THE HUMAN DISEASE AND
FUTURE ISSUES

Despite the inherent limitations of toxin- and gene-based
models, the development of experimental research on
MSA during the past 15 years has yielded significant prog-
ress in our understanding of this devastating disease. Tox-
in-based models have proven useful to analyse basal gan-
glia alterations leading to L-DOPA unresponsive parkin-
onism and have a good face validity to evaluate the
otential of non-dopaminergic therapeutic options to alle-
iate motor symptoms. Gene-based models have a good
etiological validity and are thus very valuable to investi-
ate how a primary oligodendroglial dysfunction can pro-
ote neuronal dysfunction and degeneration. They will
lso be useful to investigate gene-environment interac-
ions or the contribution of additional genetic factors. In
ddition, gene-based models will be the best experimental
est-bed to investigate disease-modifying strategies.
ranslation from bench to clinical trials has started, as
videnced by a growing number of clinical trials. However,
here is still a lot to accomplish, as currently available
herapeutic options are very limited to alleviate the motor
nd autonomic symptoms of MSA.
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