COMPUTER SECURITY

Cryptography: the security mechanism (2)

Basics (<u>3</u>)

Practical uses (<u>3</u>)

Breaking cryptographic systems (8)

Ideal cryptographic system's requirements (<u>9</u>)

Classification of cryptographic systems (10)

Classification of cryptographic systems: *on the secret* (<u>11</u>)

Classification of cryptographic systems: on the method (<u>14</u>)

Classification of cryptographic systems: *on the purpose* (22)

Randomness (<u>30</u>)

Cryptographic libraries (<u>32</u>)

Cryptographic transformations (<u>33</u>)

Some famous cryptographic algorithms (<u>34</u>)

Some numbers... (<u>35</u>)

Pointers... (<u>36</u>)

Cryptography: the security mechanism ¹

«Sxw#pruh#frgh/#jhu#pruh#exjv1#»

(Caeser's cipher adapted to Latin 1 (ISO 8859-1) table; French quotes are just delimiters.)

1 However, keep in mind: «*Cryptography is rarely ever the solution to a security problem.*» (D. Gollmann, Computer Security, p. 203)

Basics

- Originally:
 - science (and art) of secret writing
 - o aimed to hinder the knowledge of sensitive information
- Currently:
 - science (and art) of providing protection mechanisms to ensure security properties (confidentiality, integrity...)
 - \circ aims to permit control of access to information
- Relevant types of professionals:
 - <u>cryptographers</u> try to master and enhance that access control
 - <u>cryptanalysts</u> try to break the enabled access control

Practical uses

- Traditional:
 - **conceal** information P, by making it unintelligible (C)
- Modern:
 - unambiguously **identify** information *P*, by means of its *fingerprint* (hash, *h*)

Traditional use of Cryptography

- information *P* is <u>enciphered</u>, i.e. made unintelligible, *C*
- elsewhere or later, *C* will be <u>deciphered</u>, to retrieve original information *P*
- both operations are usually assisted by (cryptographic) keys¹, *K*.

Fig. Original Cryptography: basic model of concealment and recovery of info & examples of attacks (*in* several of Tanenbaum's books).

1 pieces of information necessary for using cryptographic security mechanisms (more info, later!)

Added newer usage of Cryptography

- information *P* is *fingerprinted*, by calculating its *digest*, or *hash*¹ *h* (array of bytes)
- elsewhere or later, *h* will be used again to detect the adulteration of the original information *P*
- usually, *hashing*²:
 - produces same-size values (different for each *P*!)
 - does without (cryptographic) keys

Fig. Modern Cryptography: basic model for the validation of info (e.g. integrity protection). Note the need for a protected channel!

1 PT: síntese, sumário

2 Note: *cryptographic* hashing is different from *database* hashing.

Generic Cryptographic System

So, involves:

- *P*, plaintext¹ original, uncovered information
- *E*, enciphering algorithm method to conceal the info
 - \circ or \hat{H} , hashing algorithm method to transform (hash) the info
- *K*_e, cipherkey parameter of the concealment methods
 - normally non-existent, for hashing
- *C*, ciphertext hidden information
 - or *h*, hash transformed info
- *D*, deciphering algorithm method to recover the original info
 o (does not apply for hashing)
- *K_d*, deciphering key parameter of the recovering methods
 (does not apply for hashing)
- Note that, sometimes,
 - **E** = **D**
 - $K_e = K_d$ (symmetric cryptography)
- 1 PT: texto inteligível

...Generic Cryptographic System (cont.)

Notation:

- <u>Encipher operation</u>: $C = E_{Ke}(P)$ or $C = E(P, K_e)$ or $C = K_e(P)$
- <u>Decipher operation</u>: $P = D_{Kd}(C)$ or $P = D(C, K_d)$ or $P = K_d(C)$

• obviously, $D_{Kd}(E_{Ke}(P)) = P$

- <u>Cryptographic hashing</u>: h = H(P) or F = H(P) or F = h(P)
- If
 - $K_e = K_d \longrightarrow$ symmetric cryptography
 - $K_e \neq K_d$ --> asymmetric cryptography
 - $K_e = K^+$; $K_d = K^- -->$ public-key cryptography

7-36

Breaking cryptographic systems

Attacks in traditional use

- <u>normal</u>
 - \circ only the ciphertext is available
 - $\circ\;$ try to grasp the original text or, preferably, the deciphering key
- <u>known original text</u> ("passively" obtained)
 - both the original text and its enciphered counterpart are available
 - \circ $\,$ try to grasp the deciphering key
- <u>planned original text</u> ("actively" prepared)
 - specific original texts are made to be enciphered
 - \circ $\,$ try to grasp the deciphering key

Attacks in added recent usage

- <u>find collisions</u>
 - get different documents with same fingerprint
 - any *P1*, *P2* pair (more easy birthday attack)
 - another *P*' for a specific *P* original (more difficult)

...Breaking cryptographic systems (cont.)

in all cases, attack methods involve

- mathematics
- statistics
- intuition
- for an example, see Bishop: *Introduction*, Chap.8; *Art & Science*, chap.9!

Ideal cryptographic system's requirements

- hard to break
 - \circ in a reasonable future horizon
 - formal proof would be nice...
- easy to use
 - otherwise will be rejected or bypassed
- if broken, easily replaceable
 - this is a must, as systems **will** be broken!
 - depends on what was broken (type of secret)

Classification of cryptographic systems

Perspective	Variant	Sub-variant	Examples
on the secret	secret algorithm		RC4 (originally)
	secret key(s)	single key, shared-key, symmetric	AES
		two-key, public key, asymmetric	RSA
on the method	stream ¹		RC4, One-time pad
	block	(pure)	AES, RSA ² in ECB
		mixed	AES in CBC
on the purpose	bidirectional, reversible, two-way	confidentiality ³	AES
		authentication ⁴	RSA
	unidirectional, irreversible, one-way		MD5, SHA-2
	mixed	(confidentiality & integrity)	AES-CBC-HMAC-SHA1

1 PT: contínuo, sequencial

2 Many authors do not ever classify asymmetric systems (e.g. RSA) as "block", because of their inherent inefficiency...

3 Keys are temporary and efficient

4 Keys are personal and durable (long-lasting)

10-36

Classification of cryptographic systems: on the secret

Types of secret

- secret algorithm
- secret key(s)

Secret algorithm systems

Example:

• Discover the algorithm¹ that turns the phrase (French quotes are just delimiters): «Put more code, get more bugs.»

into

```
«Wklt!jx%f) {xm ~v"cojrvmx | !54w»
```

Use:

- typically in military systems; also in commercial ones
- 1 and then tell me about it, because I have forgotten the algorithm!

...Classification of cryptographic systems: on the secret

Secret key's systems

- single key
- two-key

Example:

• Knowing that a variant of "Caesar's cipher"¹ is being used (adapted to Latin 1, ISO 8859-1, table), find the "key" that turns the phrase:

«Put more code, get more bugs.»

into

```
«Sxw!npwj%lxmp7+igv#pruh#j}ou0»
```

Use:

- common in many military, commercial and personal applications
- often, the two variants are used in conjunction (more on this later...)

1 apparently, the original Caesar's cipher used a simple "3" as key

...Classification of cryptographic systems: on the secret

Enciphering systems with key

Symmetric, secret key, shared key

- $K_e = K_d = K$
- heuristic constructions:
 - very efficient computation; so, very suitable for large amounts of data
- difficult combination and sharing of key; so, preferred for closed environments
- e.g. AES (Advanced Encryption Standard)

Asymmetric, public key, double-key

- $K_e = K^+ \neq K_d = K^-$
- math-based constructions:
 - \circ $\,$ very heavy computation; so, not suitable for large amounts of data
- easy combination and exchange of keys; so, ideal for open environments
- e.g. RSA (Rivest-Shamir-Adleman)

Classification of cryptographic systems: on the method

Enciphering methods for "long" texts

- Encipher (and decipher)¹ operations have to be done in pieces (blocks)
 - pieces could be of 1 b, 1 B, 8 B,...
 - typical: 8 B (64 b) and 16 B (128 b)
- So, *plaintext P* is divided into parts of equal size:
 - $\circ \quad \mathbf{P} = \boldsymbol{P}_1 \boldsymbol{P}_2 \dots$
 - $\circ~$ each, is separately enciphered by one of the methods:
 - stream
 - block
 - "mix" of previous...

Exercise:

- In practice, almost any text is "long". Why?
- 1 and hash

...Classification of cryptographic systems: on the method

Stream method

- each part is enciphered with a different key $K = K_1 K_2 \dots$
- $C = K(P) = K_1(P_1)K_2(P_2)...$
- if the number of keys is smaller than the number of parts, the method could be periodic (e.g. Vigenère's algorithm)
- Examples: Ronald Rivest's RC4 (ARC4), one-time pad

Example:

...Classification of cryptographic systems: on the method - stream (cont.)

Example of cryptographic technique: One-time Pad

- stream-type system
- random key (or cryptographically secure pseudo-random...)
- size of key equal to the the original text's
- key used only once
- $E = D = XOR(\oplus)$
- <u>Advantages</u>: proved unbreakable
- <u>Disadvantages</u>: exercise!

enciphering:

- original text: *P*
- key: *K*
- enciphered text: $C = P \oplus K$

Exercise:

• The system is considered unbreakable; why is it not very much used?

deciphering:

• $P = C \oplus K$

...Classification of cryptographic systems: on the method

Block Method

- each part of text, block, is enciphered with the same key *K*: ECB¹ mode
- $C = K(P) = K(P_1)K(P_2)...$
- Examples: AES, RSA²

Example:

- 1 Electronic Code Book
- 2 Many texts do not consider RSA to be a block cipher, as it is not efficient enough to be used consecutively (block after block) in long documents. E.g., see section 3.5 of Peter Gutmann, *Lessons Learned in Implementing and Deploying Crypto Software*, 11th USENIX Security Symposium, 2002.

...Classification of cryptographic systems: on the method - block (cont.)

Serious problem:

- with this method, identical blocks give identical codes!
- visual example:

Fig. a) original picture; b) enciphered with AES 256b, ECB mode

Solutions to the problem¹:

- mixing additional (and different) information per block!
 - Exs: CBC Cipher Block Chaining; OFM Output Feedback Mode; CTR – Counter Mode; ...
 - use random initialization values: IV (*initialization vector*)
- "solutions" are usually called "modes of operation" (of block ciphers...)
- 1 see More Advanced Topics

...Classification of cryptographic systems: on the method... CBC, Cipher Block Chaining

Fig. Use of CBC (*cipher block chaining*): a) enciphering; b) deciphering.

Exercise:

• Write the formulas for the encipherment (C as function of P) and vice versa.

...Classification of cryptographic systems: on the method... CTR, Counter Mode

Fig. Use of CTR (counter mode) in enciphering mode.

Exercises:

- Write the formulas for the encipherment (*C* as function of *P*) and vice versa.
- Draw a corresponding picture for the decipherment in CTR.

...Classification of cryptographic systems: on the method (cont.)

Padding

- size of block varies (in bits or bytes)
 - so, final block might need to be "padded"!
- important topic as padding is an attack vector!
- several schemes
 - e.g. PKCS¹ #7 grain is byte; add (block_size P_length mod block_size) bytes; all with value equal to number of added bytes: e.g. if 3 bytes are needed to complete last block, each added byte's value is 3
- some "modes of operation" do not need padding (why?)²

Final comment on solutions for the Block method:

- several of these methods are still vulnerable (e.g. see Kaufman et. al, Network Security, pp. 98-101)
- counter-measures: use <u>authenticated modes</u>³, safer algorithms...
- 1 Public Key Cryptography Standards
- 2 see More Advanced Topics
- 3 see More Advanced Topics

Classification of cryptographic systems: on the purpose

Purpose types

- bidirectional, reversible (*two-way*)
- unidirectional, irreversible (*one-way*)
- "mix" of previous

...Classification of cryptographic systems: on the purpose

Reversible (or bidirectional, *two-way*) encipherment:

Usage area

- Confidentiality
- (Authentication)¹
- ((Integrity checking))²

Fig. Usage of two-way cryptography.

- 1 not main purpose
- 2 difficult to use in practice, as vulnerable to attacks

...Classification of cryptographic systems: on the purpose... Reversible (cont.)

(Desired) Properties of the bidirectional algorithm:

Simplicity:

- the enciphering of the *plaintext P* (with *K*_e) is (relatively) easy;
- the deciphering of the *ciphertext C* (with *K*_d) also is.

Resistance:

• given a plaintext *P* and its ciphered counterpart *C*, it is impractical¹ to compute the key *K*, used to produce $C = E_K(P)$

Uniqueness:

• given a plaintext *P* and a key *K*, it is impractical to compute another key *K*' such as $E_K(P) = E_K(P)$

1 impractical = currently, computationally infeasible

...Classification of cryptographic systems: on the purpose

Irreversible (or unidirectional, *one-way*) "encipherment"¹:

Use area

- Authentication
- Integrity checking

Fig. Usage of one-way cryptography for integrity checking.

1 more like transformation

...Classification of cryptographic systems: on the purpose... Irreversible (cont.)

Basic idea:

- from an original text, compute an array of bytes that is characteristic of the text (*hash value*, *digest*, *fingerprint* [, *checksum*¹])
- (The original text is not recoverable from the hash!)

Usually,

- a key is not necessary: h = H(P)
- the hash value has a fixed length
- the hashing function is somewhat akin to database dispersion functions, but has very different features and purpose

1 *checksum*'s common use (in communication coding) does not convey needed cryptographic strength (e.g. uniqueness)

...Classification of cryptographic systems: on the purpose... Irreversible (cont.)

(Desired) Properties of the unidirectional algorithm:

Simplicity:

• the transformation of the original text is easy

No reversibility (or pre-image resistance):

• it is impractical¹ to invert the function $H: P \neq H^{-1}(F)^{-2}$

Uniqueness (or collision resistance):

- it is impractical to find two texts *P1* and *P2* such that H(P1) = H(P2)
- **Variant**: weak collision resistance³ or 2nd pre-image resistance
 - for a given specified text *P*, it is impractical to find a text *P*' such that H(P) = H(P').
- 1 impractical = currently, computationally infeasible
- 2 *F* from Fingerprint
- 3 "weak", because this type of collision resistance is more easily achieved

...Classification of cryptographic systems: on the purpose...

Mix of bidirectional encipherment and unidirectional transformation:

Use area

- Confidentiality & Integrity protection
 - so called Authenticated Encipherment¹

Fig. Usage of mixed two-way and one-way cryptography.

1 see More Advanced Topics

...Classification of cryptographic systems: on the purpose... Mix (cont.)

(Desired) Properties of the *mixed* algorithm:

Simplicity:

- the enciphering/enciphering of the *plaintext P/ciphertext C* is (relatively) easy;
- the unidirectional transformation for integrity protection also is.

Resistance:

given *P* / *C* pairs, it is impractical¹ to compute the key *K*, used to produce *C* = *E_K*(*P*)

Uniqueness:

• given a *P* / *C* pair it is impractical to compute another *C*' such that will, unnoticed, decipher into a different *P*'

1 impractical = currently, computationally infeasible

Randomness

- essential in Cryptography!
 - \circ one time pad, IV (initialization values), stream cipher seeds
 - o hashes
 - *nonces*, key generation (TLS, RSA...) ...
- generation
 - excellent: physical source
 - inherent
 - radioactive decay, Brownian movement, ...
 - depending on initial conditions
 - (non-biased) roulette or dice, ...
 - reasonable: algorithmic-based with physical seed
 - cryptographically secure pseudorandom number generators
 - use physical (hopefully random) sources (e.g. mouse movements)
 - Linux's getrandom() (/dev/random, /dev/urandom)
 - bad: algorithmic-based
 - pseudorandom number generators
 - POSIX's random()

...Randomness

- random oracle
 - (ideal) function that
 - for each input, outputs a unique and (truly) random value, uniformly distributed in the infinite output codomain;
 - is deterministic: always outputs the same value every time the same input is submitted.
 - \circ idealized cryptographic hash function (for finite output codomain)
 - used as a reference for proofs of security of algorithms, protocols...

Cryptographic libraries

- essential in cryptographic programming
 - encryption, hashing, signing... different algorithms... all ready to use
 - perhaps, coupled with a "cryptographically secure pseudorandom number generator"
 - why not build a library?
 - it is not just implementing algorithms, it's how they are used, how "random" numbers are generated and chosen, etc.
- examples
 - OpenSSL: the reference!¹
 - components: application & C library
 - EVP (envelope) API level (lab classes)
 - WebCrypto: JavaScript (by W3C)
 - Bouncy Castle: Java and C# (by Australia's Legion...)
 - Libgcrypt: C (OpenPGP library) (by GnuPG community)
 - PyCryptodome: Phyton

1 in spite of same infamous bugs, such as *The Heartbleed Bug* (heartbleed.com)

Cryptographic transformations

- <u>Transposition</u> exchange (swapping) of positions of elements *P*-box
- <u>Substitution</u> exchange of elements (e.g. Caeser's cipher) *S*-box
- <u>Combination</u> transposition and substitution cascade *product cipher*
- Shannon: operations should cause
 - *diffusion* each plaintext char affecting many ciphertext chars
 - *confusion* ciphertext depending complexly on key

Cryptographic transformations: a) permutation box; b) substitution box; c) "complete" system. Exercise: find out the algorithms for P- and S- boxes and validate them with c).

Some famous cryptographic algorithms

- RC4: stream key generation (1987, needs medication)
- DES: reversible system, secret key (1975, defunct)
- AES: reversible system, secret key (1998, still healthy)
- RSA: reversible system, public key (1977, still healthy)
- MD5: irreversible system (1992, defunct)
- SHA-2¹: irreversible system (2001, still healthy)
- SHA-3²: irreversible system (2015, yet in phase of wide adoption)

1 About SHA-1 end of life, see <u>sha-mbles.github.io</u>

2 Is based on new paradigm - sponge construction (keccak.team/sponge_duplex.html).

Some numbers...

•	$2^8 = 256$	number of values represented by a byte		
•	$2^{32} = 4\ 294\ 967\ 296$	maximum number of IPv4 addresses		
		\simeq 0,6 * number of people on Earth in 2018		
•	$2^{56} = 72\ 057\ 594\ 037\ 927\ 936$	number of different keys for DES algorithm		
•	• $2^{64} = 18\ 446\ 744\ 073\ 709\ 551\ 616$			
	1+ number of grains of wheat in chess board (from 1, doubled in each square)			
•	$2^{76} \simeq 7 \times 10^{22}$	mass of the Moon in kg		
•	$2^{79} \simeq 6 \times 10^{23}$	Avogadro's constant		
•	$2^{82} \simeq 6 \times 10^{24}$	mass of the Earth in kg		
•	$2^{101} \simeq 2 \times 10^{30}$	mass of the Sun in kg		
 2¹²⁸ = 340 282 366 920 938 463 463 374 607 431 768 211 456 maximum number of IPv6 addresses 				
•	$2^{256} \simeq 10^{77}$	number of values of SHA-256 hash		
•	$2^{280} \simeq 10^{84}$ number of fund	damental particles in the observable universe		

Pointers...

- The **"Public-key cryptography paper**", 1976 W. Diffie , M. E. Hellman
 - <u>www-ee.stanford.edu/~hellman/publications/24.pdf</u>
- The "**RSA paper**", 1978 R. L. Rivest, A. Shamir, and L. Adleman
 <u>dx.doi.org/10.1145/359340.359342</u>
- The "**ElGamal Signature Scheme**", 1985 Taher Elgamal
 - <u>ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01057074</u>
- The "DES Cryptanalysis paper", 1977 W. Diffie , M. E. Hellman
 www-ee.stanford.edu/~hellman/publications/27.pdf
- The "**Rijndael**, **AES Proposal**", 1999 Joan Daemen, Vincent Rijmen
 - <u>citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.640</u>
- The "MD5 Message Digest Algorithm", 1992, R. Rivest
 - o tools.ietf.org/html/rfc1321
- The **"The Keccak SHA-3 submission**", 2011, G. Bertoni et al.
 - o <u>keccak.team/files/Keccak-submission-3.pdf</u>
- The "Crypto Mini-FAQ", Internet FAQ Archives, -2014, Roger Schlafly
 - <u>www.faqs.org/faqs/crypto/faq/</u>