
Web
Security

CO O KIES
OAU TH 2. 0 AND O PENID CO NNECT
TO KENS
CO NNECTION PROTECTION IN SEV ERAL FLO WS

APM@FEU P

Web applications

APM@FEUP 2

user client
browser

network attacker

web
service

web
service

database

external
resources

web attacker
(malicious site)

HTTP protocol

web server

web
app

HTTP web request

 HTML web response 
(HTML, CSS, JS, images)

Security needs

➢As any other application and resource access

▪Web apps often need user identification, authentication, authorization

➢The HTTP protocol is stateless

▪ Some mechanism to assure that several requests come from the same
user, after authentication, is needed

▪ Establishment of a session

▪ Cookies were invented in 1994 (Netscape), patented, and standardized
• IETF RFC 2109 and RFC 2965, with the more recent RFC 6265 (2011)

• They are automatically transported between web app and browser

• They can carry session identification

APM@FEUP 3

HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: theme=light
Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT
…

GET /spec.html HTTP/1.1
Host: www.example.org
Cookie: theme=light; sessionToken=abc123
…

http://www.example.org/

Cookie authentication

➢ Besides a pair name-value cookies can have more attributes

▪ Domain and Path specify the server domain (and subdomains) and the
address (and subpages) to where cookies can be returned

▪ Expires (or Max-Age) specifies the validity in time
• If omitted, only valid for the current session

▪ Secure and HttpOnly limits the cookie communication to encrypted
transmission only (the first) and not readable by client-side scripting
(the second)

➢Using some authentication/authorization protocol

APM@FEUP 4

Session hijacking

➢Cookies can be transmitted in clear text
▪ Vulnerable to eavesdropping

▪ Once a valid cookie is captured, it can be used directly or used in a man-
in-the-middle attack

▪ Counter-measure: protect the channel (SSL/TLS with HTTP – HTTPS)

➢ DNS cache poisoning
▪ Fabrication of sub-domains to get the cookies

➢Malicious addresses
▪ Accessed using cross-site scripting (XSS)
• Script in the same site directs information to another (malicious) site

▪ Performing operations on a legitimate site through cross-site request
forgery (CSRF)
• User executes script in a malicious site that uses non-expired cookies in valid

operations on previous visited site

▪ Proxy request
• A proxy server is specified through XSS

APM@FEUP 5

Web authentication / authorization

➢Many systems have been proposed and developed

▪ For many general-purpose scenarios

▪ Using specialized servers as identity and/or authorization providers

▪ They can use external devices to identify the user
• A PIV system, using a smartcard, and a PIN or biometric 2nd factor

▪ In large enterprises, a single authentication server can perform this
operation for may web applications

▪ Or several organizations can rely on a third-party identification and
authentication server
• These are called single sign-on solutions (or SSO)

▪ These web security mechanisms that involve several servers rely on
• Automatic redirections between them (HTTP 302 (temporary change))

• Small document for information transport (tokens)

APM@FEUP 6

PIV – Personal Identity Verification

➢ Based on smartcard possession

▪ Standardized by NIST (FIPS 201-2) / European countries have similar

▪ Usually requires 2FA (card + PIN / biometrics)

APM@FEUP 7

PIV System

Authentication

- based on a signed certificate
- a signature proving the

private key possession
matching the certificate

Single-sign-on and federated authentication

APM@FEUP 8

Applications
Service providers

Identity
attributes
database

Identity
attributes
database

Identity provider

Authentication Access

ID token
- User attributes

User

Shibboleth
SAML
OpenId

OAuth 2.0 Authorization Actors

➢OAuth was specified for allowing users be aware of
operations in protected resources (usually created by them)
by web apps that use the resources

▪ OAuth 2.0 is standardized and described in RFC 6749
• Specifies an authorization flow for web APIs and resource access on behalf of a

web application and user

• It’s not specifically an authentication protocol, but implicitly must include
authentication

• Depends on the quality of the user registration

• It can be adapted for many situations and scenarios

APM@FEUP 9client app service resource
browser

user

authorization
provider

protected

OAuth 2.0 authorization basic flow

APM@FEUP 10

OpenID Connect

➢OAuth 2.0 does not provide any direct user identification

▪ The web app does know nothing about the user
• Authorization codes and access tokens are opaque to the app

➢OpenID Connect extends OAuth

▪ Uses provider authentication and supplies an identification token
• represents the user and contains user info (claims)

APM@FEUP 11

Protective implementation of OAuth

➢ RFC 6819 recommends good practices in OAuth 2.0
implementations

▪ All of them should be followed

▪ One of them addresses a potential CSRF attack

APM@FEUP 12
browser

user

authorization
provider

attacker

Obtains a legitimate
authorization code (from his own
subscription) from the authorization
provider

injects it as the auth code of another user tricking him to click
some link containing a forged request to
the app, as if it is a reply from the
auth provider

Protection: include a
state value when asking
for authorization client app

OAuth code stolen protection

➢User interrupts access after obtaining a valid auth code

▪ Because the auth code comes in a parameter in the redirection from the
auth server, it remains in the user’s browser history ...

▪ Potentially an attacker can see it in the browser history, an perform a
legitimate authorization replacing his own code with another user code

APM@FEUP 13

Protection: Proof Key for Code Exchange (PKCE)

OAuth code grant and token exchange

APM@FEUP 14

client
app

authorization
server

user

browser



Security protections:
CSRF protection (state)
and PKCE
(code_challenge / code_verifier)





 Authorization request (redirect)

state=xxxxxxxx & code_challenge=yyyyyyy & code_challenge_method=S256

 Authorization dialog (direct)

Code response (redirect)

state=xxxxxxxx & code=ccccccccc (authorization code)



Token exchange (direct)

code=ccccccccc & code_verifier=zzzzzzzzzzz

code_verifier (random) is generated and stored
in the client application

code_challenge = H(code_verifier)
code_challenge_method specifies which H

The access token is returned if the code is verified

Tokens

➢Tokens are small documents protected against
• forgery (usually signed by the originator)

• disclosure and modification (encrypted and authenticated)

• The destination (audience) can verify, know the origin, and read the content

▪ They usually carry authentication, authorization data, user identity
• In the form of name/value pairs, aka claims

• The audience trusts the issuer (IdP, AuthN or AuthZ services)

▪ Tokens can use a JSON format (called ‘jots’, aka as standard JWT)
• RFC 7519, together with RFC 7515 (JWS), RFC 7516 (JWE), RFC 7517 (JWA),

RFC7518 (JWK)

• Used together these standards form the JOSE (JSON Object Signing and
Encryption) defined and exemplified in RFC 7165 and RFC 7520

APM@FEUP 15
client app

Identity Provider
Authentication server

user

browser







identity token

Authorization server

client app

resource provider





authorization token

Authentication Authorization

JWT format with a signature (JWS)

➢These tokens carry information directly from an issuer to the
audience (the application that uses it)

▪ e.g., an identity token from an IdP to a client app

▪ Using a cryptographic signature, the audience can verify the integrity
and the origin

APM@FEUP 16

{ ‘typ’: ‘JWT’,
‘alg’: ‘HS256’ } { ‘iss’: issuer

‘sub’: subject
‘aud’: audience
‘exp’: expiration
‘iat’: issued at
‘jti’: unique id }

‘nonce’: anti-replay
‘acr’, ‘amr’: authn characterization
‘at_hash’, ‘c_hash’: companion hashes

OpenId Connect token

The signature is performed
over the 2 first parts
can be a HMAC (shared key)
or use RSA or ECC (asymmetric)

Identity
Provider

Client
application

private key

public key

ID Token

JWT with encryption (JWE)

➢When a token contains confidential info, it should use JWE

▪ E.g., when received by an app to be used in a resource server, the app
doesn’t need to know the content

▪ JWE specifies a 5-part token

APM@FEUP 17

{ ‘typ’: ‘JWT’,
‘enc’: ‘A256GCM’
‘alg’: ‘RSA-OAEP’ }

random symmetric key
encrypted by an asymmetric
public key (from the audience)

random IV
(different for each token)

The encryption must be performed
with a symmetric key in AES with
authentication and AD (the GCM mode
is the most used). The AD is derived from
the header byte sequence.

the MAC produced by the
GCM algorithm.

the encrypted payload.

The destination server must be
previously registered with the
Authorization server and its public
key stored.

Authorization
Server

Client
application

Resource
Provider

private key

public key public key
registration

Access Token

request

Sometimes to guaranty to the client app
knowledge of the origin of the access
token, this JWE can be the payload of
a JWS, verified and extracted at the app.

Opaque tokens and introspection

➢These tokens carry on just a meaningless random string

▪ The claims are maintained on a database at the emitter (authorization
server for access tokens)

▪ The emitter must have an introspection endpoint with an authenticated
access to the claims of a token
• It’s also possible a hybrid implementation

APM@FEUP 18

Opaque token

Hybrid token

The
introspection
request

The UserInfo endpoint

➢From OpenID Connect specification

▪ The response from a successful authentication is an IDToken
• It only proves authentication of a user with a given ID

• To obtain user information a request to a user info endpoint must be made
with an access token (obtained at the same time)

APM@FEUP 19

The access token should contain the user id in
the ‘sub’ claim and possibly a ‘user’ or ‘username’ claim
The ‘scope’ claim must include “openid”

The UserInfo endpoint of the AuthN/AuthZ server is treated as
a Resource endpoint, so the access token is sent in the Authorization
header

Request:
GET /userinfo HTTP/1.1
Host: server.example.com
Accept: application/json
Authorization: Bearer <access_token>

Sample response:
HTTP/1.1 200 OK
Content-type: application/json

{
“sub”: “9XE3-JI34-00132A”,
“preferred_username”: “alice”,
“name”: “Alice Smith”,
“email”: “alice.smith@example.com”,
“email_verified”: true

}

UserInfo and Resource provider access

➢The access token returned by OAuth can grant access

▪ To the UserInfo endpoint on the AuthZ server itself

▪ To the Resource provider with the permissions granted to/by the user

➢Sometimes it is desirable to separate

▪ OpenID Connect has a flow allowing that

APM@FEUP 20

The access tokens here are different:

The first can contain only the “openid” scope (and other
related defined by the OpenId specification)

The second can contain only the scopes related to the
resource provider

Refresh tokens

➢Access tokens should be very short-lived

▪ A few minutes, allowing only a small number of requests

▪When they expire a new one should be obtained

▪ To avoid a new authorization with user intervention, many
implementations return a refresh token, together with the access token

▪ Refresh tokens live a longer period (like an hour or more)

▪ They can be
used to get
another
access token

APM@FEUP 21

App and resource server authentication

➢IdP and AuthZ Servers need to recognize their clients

▪ Usually, they need to be registered previously
• There are standard protocols to register dynamically, or use some OOB way

• Either way they should be confirmed by an administrator

▪ In the registration a unique ID is assigned (e.g., a client_id property) and
also a shared secret (client_secret) or a pair of asymmetric keys

▪ All requests to AuthN/AuthZ servers must include authentication data

APM@FEUP 22

Common form of request authentication
(always using TLS)

App and resource server authentication (2)

▪ Another way is using a client assertion

▪ The only unauthenticated request accepted should be the initial authorization request (starts the direct
dialog with user)

APM@FEUP 23

A JSON object is filled with client data

It is signed, sent as a parameter,
and verified at the server with
A public key established at registration

Permissions and the scope claim

➢Oauth does not specify how to represent permissions

▪ It specifies the ‘scope’ claim only as a list of words space-separated

• The ‘scope’ content can be requested by the app in the initial authorization

• It should be presented to and authorized by the user

• It should be checked by the AuthZ server, knowing the user and resource server

• The AuthZ server can grant all or only a subset of the ‘scope’ words

• It is included in the Token endpoint response, and in the access token

• It should be checked by the resource provider (it should also know the user)

APM@FEUP 24

Request to exchange a code by a token in the /token endpoint
Notice the code_verifier (PKCE) parameter

Successful response from the AuthZ server

The Client app should also authenticate with the server using one of the
previous methods

Bearer vs PoP tokens

➢Client apps present access tokens to a resource provider

▪ Usually in the Authorization header as a Bearer token

▪ They are honored by the server (if valid), independently of the sender

▪What if, from a server or app vulnerability, they are stolen?
• The resource and operation that they grant access, can also be stolen

• Bearer tokens are like cash, they grant access to who ever have them

▪ To protect against this possibility, we can use PoP tokens
• PoP = proof of possession

▪With this kind of tokens, the resource provider should be able to check
that who sends them is the same app that has requested them
• The AuthZ server associates a key with each token when they are emitted

APM@FEUP 25

PoP tokens

➢The associated key is generated in the exchange of code

▪ It can be generated in the client or AuthZ server, and can be symmetric
or asymmetric

▪ For a symmetric key both the client and server must know and store it
• The server can include it inside an encrypted JWT (a JWE)

▪ For asymmetric the server stores the public and the client both
• Again, the server can embed the public key in a JWE

APM@FEUP 26

PoP tokens generation phase

APM@FEUP 27

PoP tokens use and verification

APM@FEUP 28

Response from the token endpoint

➢If a PoP token is returned, and the server generated a key or
keys, the token endpoint response should include them

➢In the token endpoint request and response keys should be
transmitted using the JWK specification

▪ A JSON object different for each kind of key

▪ Example of a response containing a pair of RSA keys
• These keys are always ephemeral

APM@FEUP 29

Client app token preparation

➢The client app creates a JSON object containing

▪ The original token, a time stamp, and some HTTP request data

▪ Then this is used as a payload in JWS token, signed with the symmetric
or private key, corresponding with the association in the AuthZ server

▪ Finally, the token is sent to resource provider, in the Authorization
header

APM@FEUP 30

eyJhbGciOiJSUzI1NiJ9.eyJhdCI6ICI4dXloZ3Q2Nzg5MDQ5ZGFmc2RmMjM0ZzMiLCJ0cyI6IDMx

NjUzODMsImh0dHAiOnsidiI6IlBPU1QiLCJ1IjoibG9jYWhvc3Q6OTAwMiJ9fQo.m2Na5CCbyt

0bvmiWIgWB_yJ5ETsmrB5uB_hMu7a_bWqn8UoLZxadN8s9joIgfzVO9vl757DvMPFDiE2XWw1m

rfIKn6Epqjb5xPXxqcSJEYoJ1bkbIP1UQpHy8VRpvMcM1JB3LzpLUfe6zhPBxnnO4axKgcQE8Sl

gXGvGAsPqcct92Xb76G04q3cDnEx_hxXO8XnUl2pniKW2C2vY4b5Yyqu-mrXb6r2F4YkTkrkHH

GoFH4w6phIRv3Ku8Gm1_MwhiIDAKPz3_1rRVP_jkID9R4osKZOeBRcosVEW3MoPqcEL2OXRrLh

Yjj9XMdXo8ayjz_6BaRI0VUW3RDuWHP9Dmg

PoP – Another way

➢To avoid the key generation and transmission
▪We can use the Mutual TLS authentication feature and have a client

certificate and private key on the app side

▪ The server verifies the certificate and extracts the public key that it
binds to the token

▪ The client uses the private key to sign the token
• The resource provider also receives the same certificate, and use it to verify

the token

▪ A disadvantage could be the use of same key for several tokens
• Can be mitigated if the app server, AuthZ server, and resource provider share

and trust the same private CA
• Make the client app generate a new certificate for each token it obtains

APM@FEUP 31

Web applications common attacks

➢OWASP lists the top 10 web apps vulnerabilities and attacks

▪ The list is periodically renewed

▪ https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

▪ Complete characterization and countermeasures are included

APM@FEUP 32

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

