
Distributed Systems
Security

AU THEN TI CATI O N
KE Y DI S TR IBU TI ON
KE RBERO S (T IC K ET BASE D AU THORIZ ATIO N)

AP M @F EU P

Distributed and Web Applications

2

web
server

web
app

server

web
service

server

remote
objects

. Eavesdropping

. Spoofing

. Unauthorized access

. Man in the middle

. Denial of service

. Replay

Clients applications

resources

Main threats related to the network
APM@FEUP

Identifying and authorizing
One of main aspects is identifying users and servers and

authorizing operations and accesses

The other is guarantying confidentiality, integrity and
authenticity in information exchanges

3APM@FEUP

Remote authentication
Authenticate a node or user over a network
We need to assume eavesdropping as a threat, leading to spoofing

 The proof of identity must be protected, and ideally should not be
transmitted

 Eavesdropping makes a replay possible and easy
• Each authentication exchange must be different
• A protocol using some sort of challenge-response is mandatory

Authentication uses unique data or secret, known by two
 Can be based on passwords, other secrets, biometrics, symmetric or

asymmetric keys

 General operation
• Authenticator sends a challenge (different each time)
• Prover combines it with secret (using some secure process) and replies it
• Authenticator verifies both challenge and secret (associated with an identity)

4APM@FEUP

Remote authentication protocols
It is possible to base authentication only on symmetric or

asymmetric cryptography
 Two basic methods next using symmetric or asymmetric keys

For password-based authentication the CHAP protocol was one of
the first published
 Based on the storage, as a secret on the authenticator side, of H(P(U))

 The value is combined with a nonce in the client side, and a new hash is
transmitted
• This schema was already presented as the basic challenge-response protocol

For passwords with salts, the SCRAM protocol is more used
 SCRAM - Salted Challenge Response Authentication Mechanism

 Described as a standard in IETF’s RFC 5802

Zero-knowledge password proof
 Proving that the user knows a secret without saying it

 SRP is most used, but there are others

5

Salted Challenge Response Authentication Mechanism

APM@FEUP

Generic with preset symmetric key
A symmetric key is known by authenticator(A) and prover(P)
Only these two parties know the key (established in installation or

registration), e.g., using DH or ECDH
 Let it be KAP

 Let N be a nonce (a unique generated random value)

Mutual authentication or one-way are possible

 For one-way authentication, NP and the last message are omitted

6

IDP – I’m P

NA

NP, EKAP
(NA)

EKAP
(NP)

Prover Authenticator

verify NA

verify NP

APM@FEUP

Generic with preset asymmetric key
The public keys of each party are known
 They are previously established (usually using certificates, CA signed)

 The correspondent private keys are only known by each party

What is the purpose of NP ?

7

Prover Authenticator
EPUA

(IDP, NP)

EPUP
(NP, NA)

extract IDP and NP, using PRA

NA

extract NP and NA, using PRP
verify NP

verify NA

APM@FEUP

SCRAM protocol

8

RegistrationUser: u, password: P

In a database
u: salt (s), iterations (i), Stored Key: (StK), Server Key: (SrK)

SrK = HMAC(StP, “Server Key”) (server Key)
StK = H(HMAC(StP, “Client Key”) (stored Key)
StP = Salted Password = Hi(s, P) = Hi
U1 = H(s, P, Int(1)), …, Uk = H(P, Uk-1)
Hi = U1… Ui

Authentication

u, Nu (Nu – random nonce)

s, i, Ns (Ns – random nonce)

User: u, password: P

Computes proof:
ClKey = HMAC(StP, “Client Key”)
Prf = ClKey HMAC(StK, NuNs)

NuNs, Prf

Verifies if:
H(PrfHMAC(StK, NuNs)) == StK
Computes verifier (server signature):
SrS = HMAC(SrK, NuNs)

SrS

Verifies if:
HMAC(HMAC(StP, “Server Key”), NuNs) == SrS

Remote server

Client

APM@FEUP

SRP – Secure Remote Password
Zero-knowledge password proof
 A method of proving password knowledge without transmitting or

storing direct password dependencies
• It claims to prevent eavesdroppers or man-in-the-middle to obtain enough

information for a brute-force or dictionary attack
• Specifically designed to avoid existing patents

• Existing for the EKE algorithm (Encrypted Key Exchange)

 Creates a large shared key in a way like Diffie-Hellman, based on the
client knowing the password and the server having a cryptographic
verifier derived from the password
• The shared key is generated from two random values (one in the client and the

other in server)
• Does not need a third party, as Kerberos does

 It needs a finite field Z(N) (N = 2q+1, with q and N primes)

 Also, needs a generator value g of the multiplicative group Z*
N

• The generator g, is a primitive root of N
• g1, g2, …, gN-1, generate a permutation of 1..N-1 (elements of group Z*

N, with N prime)
• All operations performed using mod N

9
APM@FEUP

SRP – Registration and Verification

10

Both previously agree on N = 2q+1 and g, N and q big primes
(arithmetic mod N, and g a generator of ZN

*)
Registration

Client chooses: Id, P and s
Calculates: x = H(s, P) and v = gx

H() is an agreed upon hash, e.g., SHA-256
Id – identifier
P – password
s – a random salt
s, P – some combination of s and p

Server stores: Id, s , v
(not knowing x)

Value v is called the verifier

Both parties can compute k=H(N, g) N, g – some combination of N and gLogin

User supplies Id and P
A random big integer is generated: a
A = ga

Id, A
A random big integer is generated: b
B = kv + gb

s, B
Both calculate u = H(A, B)

x = H(s, P)
S = (B – kgx)a+ux

K = H(S)

S = (Avu)b

K = H(S)The value K should be the same

To verify it:

M1=H(H(N) xor H(g), H(Id), s, A, B, K)

M = H(H(N) xor H(g), H(I), s, A, B, K)

Calculate M1 and verify.
If OK: M2=H(A, M1, K)Calculate M2 and verify.

A, B, and u, should be  0APM@FEUP

Session (short-term) Key Establishment
Needs, usually, a key generation server, trusted by all
Many times, called the authentication server (AS) (or also known as the

KDC – key distribution center)

With symmetric keys, the AS and all other parties pre-share
a long-term symmetric key (different for each party)
 It is stored in the AS and each party
 The existence of a centralized AS avoids pre-sharing of N2 keys
 The authentication is also used to distribute a short-term session key for

being used between two parties

With asymmetric keys each node has its own private key
 The AS stores the public keys of every party
 Each party stores the public key of the AS

 Protecting against replays needs a nonce or a timestamp
 Timestamps need time synchronization which enlarges the attack

surface

11APM@FEUP

Symmetric key protocols

12

AS (Authentication Server)
symmetric keys pre-shared (Ka, Kb)

User A
IDA, Ka

User B
IDB, Kb



IDA || IDB || N1


EKa(Ks||IDB||N1||EKb(Ks||IDA))



 

EKb(Ks||IDA)

EKs(N2)

EKs(f(N2))
The Needham-Schroeder protocol (1978)

Vulnerability: if someone compromises an old session key Ks, he can replay from message 
Countermeasure by Denning (1982): include a timestamp at message  and  EKa(Ks||IDB||T||EKb(Ks||IDA||T))

But the timestamp T is established in AS and verified in B. A better way was established by Neuman in 1993:

 A  B: IDA || Na
 B AS: IDB || Nb || EKb(IDA || Na || Tb)
 AS A: EKa(IDB || Na || Ks || Tb) || EKb(IDA || Ks || Tb) || Nb
 A  B: EKb(IDA || Ks || Tb) || EKs(Nb)

With this proposal by Neuman
in 1993 Tb is essentially established
and verified in B.
Also, here Tb is a time limit (validity).

Before the limit Tb expires is still possible to A initiate another session with B, without the AS intervention:

 A  B: EKb(IDA || Ks || Tb) || N’a
 B A: N’b || EKs(N’a)
 A  B: EKs(N’b)

APM@FEUP

Asymmetric key protocol

13

AS (Authentication Server)
asymmetric keys pre-shared (PUa, PUb)

User A
IDA, PRa, PUa, PUas

User B
IDB, PRb, PUb, PUas



IDA || IDB


EPRas(IDB||PUb)



EPUb(Na||IDA)


IDA||IDB||EPUas(Na)


EPRas(IDA||PUa) || EPUb(EPRas(Na||Ks||IDA||IDB))





EPUa(Nb || EPRas(Na||Ks||IDA||IDB)

EKs(Nb))

Denning (1982) has proposed also an asymmetric protocol based on timestamps, but it
required network synchronization.
Woo and Lam (1992) devised another protocol, without dependencies, and based on nonces,
presented above.

In this protocol the AS acts as an authority for certification of the public keys of other
users, when it sends those keys with the corresponding ID, encrypted with his private
key, like: EPRas(IDA||PUa) only the AS can produce such a message, which can be
decrypted only with his public key (which everyone knows).

APM@FEUP

Other types of distributed authentication

Use of certificates (Mutual authentication e.g., with TLS)
 Can be used by both servers and clients

• The subject of the certificate is the entity to be authenticated
• Should be verified in validity, function (or purpose) and revocation
• From a trusted CA or from the enterprise, and installed as trusted

Token or ticket based
 Verifiable in specialized services and protocols

• Kerberos, OAuth

14

enterprise self signed (trusted)
or
CA signed (better)

signs

Users or services certificates

APM@FEUP

Stronger passwordless authentication
Many systems were implemented to allow authentication

based on a single action from the user
 FIDO (Fast Identity Online) standardizes for mobile / web Apps/APIs

 Authentication based on possession and/or biometrics supplied on
client device and/or external, with asymmetric cryptography
• Better with hardware support on the device (TPM, SE, TEE, …)

 The user presence is verified on an Authenticator application, that in his
time authenticates with a server

APM@FEUP 15

FIDO essential components
Several standard software components are needed in a client

and a server
 The client runs the user app or a browser, and the server contains a web

app or API with the protected remote services

APM@FEUP 16

External
Authenticator

The FIDO Authenticator function
When an authenticator is built
 It has an attestation key (private), whose matching key (public) is on the

FIDO metadata service (contains also authenticator characteristics)

 The authentication keys are generated in registration operations

APM@FEUP 17

FIDO Registration
The registration happens the first time the user executes the

client application or accesses the web app
 The FIDO server creates a binding between the app, the user, and the

authenticator

 Different keys in the authenticator, are generated for different apps
• Message (2) contains an app identification from message (1) or from the web

app in the server

 Authenticator recognizes always the same user

 Authenticator is recognized from its attestation signature

APM@FEUP 18

FIDO UAF Authentication
The UAF (Universal Authentication Framework) is one of the

FIDO protocols

Initiated with a login or a sensitive operation
 Like a paypal payment, when the service is requested from paypal

APM@FEUP 19

UAF Transaction Confirmation
Use case where the user has to bound to some statement
 The working is similar to the previous, but some statement is presented

to the user, and signed with the FIDO user private key

APM@FEUP 20

U2F and CTAP
For applications that need a passwordless second factor
 U2F – Universal 2nd factor, CTAP – Client to authenticator protocol

 Can be provided by a FIDO device and authenticator

 If the authenticator is on another device, it can communicate with the
client application using (usually wireless) the CTAP protocol

 Otherwise, it is like the UAF Authentication or Transaction Confirmation
operations, already seen

APM@FEUP 21

Communications security (1)
 Should guaranty the security properties (CIA) regarding the

transported message
 Should guaranty confidentiality, integrity, and message authentication

 Can be at two distinct levels
• Transport level security

• Examples: IPSec, SSL/TLS (HTTPS in the HTTP protocol), between nodes

• Message level security
• Encryption, MAC, message signature, end-to-end

• Sometimes both can be active

22

Client Server

Transport
driver

Transport
driver

Channel

Transport level security

secured elements



APM@FEUP

Communications security (2)
 Sometimes transport security is not enough
 Transport level is point-to-point

Message level is end-to-end
(client to final server)

23

Client

Dispatcher
server

Server

Server

Client
can use transport

level security

should use
message level

security

Client Server

Transport
driver

Transport
driver

Channel

Message level security

secured elements



APM@FEUP

Kerberos
 Designed at MIT to meet distributed systems authentication
 Two versions are in existence (4 and 5) with version 5 more extensive

and secure (Version 5 is an RFC standard (1510, 4120/1)

 Requires the user to prove his identity to each service invoked. Also,
servers should prove their identities to clients

Main requirements
• Secure – prevent eavesdroppers to obtain the information needed to

impersonate a user
• Reliable – distributed architecture with some systems able to replace the

functions of others
• Transparent – users are not aware of its presence beyond the requirement to

enter its identifier and password
• Scalable – To be able to support large numbers of clients and servers and grow

• Division into realms

 Servers are not required to trust one another

 But all systems should trust a third-party authentication server

24APM@FEUP

Kerberos operation
 Kerberos requires two services with separate functions
 An authentication service (AS) with access to the user and privileges

database

 A ticket granting service (TGS) emitting tickets for servers and services

25APM@FEUP

Earlier design of the protocol

26

C – client
AS – authentication service
TGS – ticket granting service

Kc – symmetric key derived from password (stored at AS)
V – server providing the service or resource to the client

AD – network address
TS – time stamp

Ktgs – key known by the AS and TGS
Kv – key known by each V and the TGS

I. At logon the client identifies itself and the TGS. The AS responds with a ticket encrypted with a key derived
from the client password (stored at the AS). The client asks the user for the password, derives Kc and unencrypts
the ticket Ttgs. The possession of the correct ticket (Ttgs) proves the client identity.

The ticket contains the client Id, its address, a time stamp, and a lifetime, and can only be read by the TGS
(the lifetime is typically a few hours)
II. When the client needs some service or resource from V it asks the TGS for a ticket to V, sending the previous
ticket (Ttgs). The TGS responds with a ticket to V (Tv) if the Ttgs is valid. Anytime the client needs services from V
it repeats the process.

The ticket to V identifies the client user and the computer network address. It contains also a time stamp and
lifetime.

III. Whenever the client needs to contact V, it establishes a session, sending Tv. If V recognizes the ticket, the
session is granted.

APM@FEUP

Shortcomings and improvements
The previous protocol

• protects the user password and allows the system to ask the password only
once per logon

• But, as the ticket lifetime should be long (hours), there is a window for replay
• An attacker can wait for the client to logoff, spoof the network address, and replay

message (3) within the original lifetime …

 New requirements
• There should be a proof that the presenter of a ticket is the same to whom it

was emitted
• Servers should also authenticate themselves to clients (preventing server

spoofing)

 Solving
• AS provides both client and TGS with secret info (e.g., a key) when emitting

the Ttgs. The client can prove its legitimacy providing that info to the TGS.
• Actually, this takes the form of a symmetric key generated by AS (Kc,tgs),

communicated to C and TGS, and used to encrypt messages between the two
• For server authentication we can use a handshake (e.g., TS replied by TS+1)

and a common key (Kc,v) generated by the TGS

27APM@FEUP

The actual Kerberos v4 protocol

28

Kc,tgs and Kc,v
keys communicated to client and
TGS, and client and V, respectively
(by AS (the first) and TGS (the second)

Authenticatorc
Proof that the origin is C
The lifetime of these messages is
very short

Message flow
APM@FEUP

Kerberos scalability
Users, servers, services and resources can be divided in

realms
 Each realm has its own AS and TGS

 Each realm TGS can emit tickets to the other realms TGSs

29

Kerberos servers share
symmetric keys between them

APM@FEUP

Kerberos v5 improvements
 Initially standardized in the mid 90’s (RFC 1510 (1993))
Was revised in 2005 (RFC 4120/1) with updates in algorithms since then

 addresses encryption, network protocol, byte order, lifetimes,
forwarding, and inter-realm authentication
• allows other encryption algorithms, including asymmetric
• v4 supports only IP network protocol, v5 allows others
• network byte order can be specified in messages
• lifetimes are now specified as start time and end time
• allows a server V to use other services and resources in other servers in behalf

on the same client (requesting tickets)
• uses inter-realm authentication without using N2 Kerberos-to-Kerberos

relationships (in a system with N realms)
• It allows the derivation of sub-session keys
• Allows user pre-authentication

 All these new features and extensions have conducted to a more
complex protocol

30APM@FEUP

Kerberos version 5 summary

31APM@FEUP

