Evaluation of Animal Behavior: Problems and Pitfalls

focus on pain research

Clara Monteiro

Departmento de Biomedicina Faculdade de Medicina da Universidade do Porto

PDN – 24 Maio de 2023

Animal behavior vs. Behavioral laboratory work

Behavior (ETHOLOGY) is the science that studies animal behavior: communication, social structure, aggression, activity patterns, mating, etc ...

Ethology is based on the observation, interpretation and quantification of **spontaneous** behavior, commonly in **natural** conditions, without **human intervention**.

Most of the laboratory work in neuroscience is not ethology

Animal behavior vs. Behavioral laboratory work

Behavior in laboratory work is usually something very different: we use **not spontaneous** behavioral responses as measurable indicators for parameters that are noncommunicable otherwise (ex: memory, anxiety, vision, pain ...).

We cannot forget what - ultimately - what is evaluated experimentally, are always MOTOR RESPONSES

We do not observe the mental states of *memory, fear, pain...*

We only observe the motor responses that we use to quantify *memory, fear, pain*.

Animal behavior vs. Behavioral laboratory work

The goal of this class is to alert to the problems that ALWAYS exist when we use **motor responses** to evaluate **something more complex**.

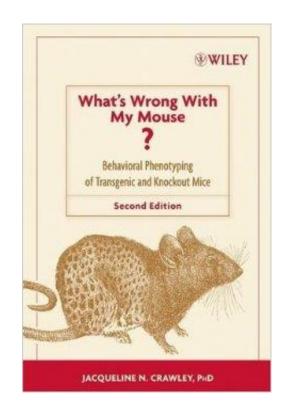
We have to ask ourselves:

Is the motor response of this test **adequate** to evaluate what I want to study (ex: memory, fear, pain)?

Is the motor response **affected** only by what we want to evaluate (ex: memory, fear, pain)?

Take-Home Messages

Repeat, Repeat, Repeat


Observe, Observe, Observe

Question, Question, Question

Recommended reading for those starting studies based in animal models

Addresses laboratory protocols, principles of ethology and even veterinary care for animal welfare

Problems and Pitfalls in Behavioral Experiments

cautions in the planning, execution and interpretation of behavioral experiments

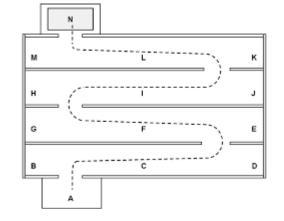
Caution # 1

Observe the behavior of EACH animal: locomotion, attention, excitement ...

Are the GROUP changes also observed at the INDIVIDUAL level?

Be on the lookout for FALSE-POSITIVE or FALSE-NEGATIVE effects of the experimental protocol...

The problem of false positives

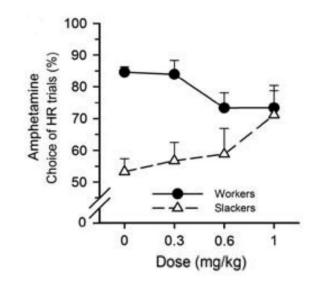

The most common type of false positive is an incorrect **attribution** of an observed behavioral change.

"if all you have is an hammer, everything looks like a nail"

For example, interpreting change in task performance as a change in motivation or in stress, when in fact it is only a change in motor behaviour...

The problem of false positives

A good example of incorrect interpretation of results is Karl Lashley's conclusion that navigation memories are distributed in the cortex; it is now known that in over-trained animals the cortical memories are transfered to non-cortical areas.

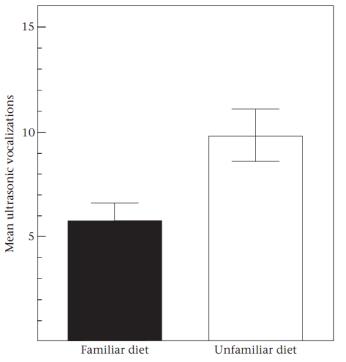

Another exemple is that the hippocampus is crucial for fear conditioning, but it is irrelevant to other types of conditioning such as the eye-blink that is dependent on the cerebellum.

False negatives and group variability

Is each animal strain homogenous, or there may be variability within a group of similar animals?

Variability within a supposedly homogeneous group can hide real differences between groups of individuals

Cocker et al (2012) Neuropsychopharmacology

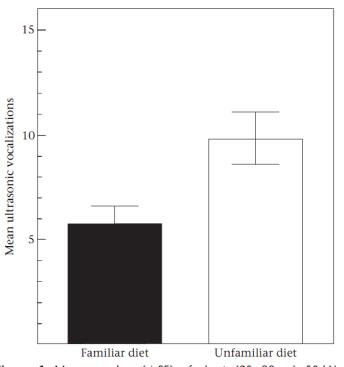

Caution # 2

Uncontrolled communication between animals, may change their behavioral responses

Effect of Direct Communication

Do animals exchange learning information?

Figure 1. Mean number $(\pm SE)$ of short (20-80 ms) 50-kHz ultrasonic vocalizations produced by pairs of reunited Norway rats when one member of a pair had eaten an unfamiliar food or both pair members had eaten the same familiar food while pair members were separated.


Pairs of two animals in the same cage were kept separate and individually exposed to two types of food: the usual (normal diet) or a novel diet based on corn starch or milk protein.

During the three minutes immediately following their meeting in the usual cage, the type of **ultrasonic vocalizations** made by the two animals **coded** the type of diet they had been exposed to.

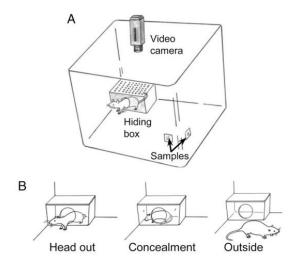
Effect of Direct Communication

Do animals exchange learning information?

Figure 1. Mean number $(\pm SE)$ of short (20-80 ms) 50-kHz ultrasonic vocalizations produced by pairs of reunited Norway rats when one member of a pair had eaten an unfamiliar food or both pair members had eaten the same familiar food while pair members were separated.

Adult mice/rats produce two types of vocalizations:

- Long ultrasonic vocalizations: low frequency (0.3-3 sec, 22 kHz)
- Short ultrasonic vocalizations: high frequency (20-80 ms, 50 kHz)


Slow vocalizations are commonly associated with negative experiences, while short vocalizations typically signal positive experiences and social interaction.

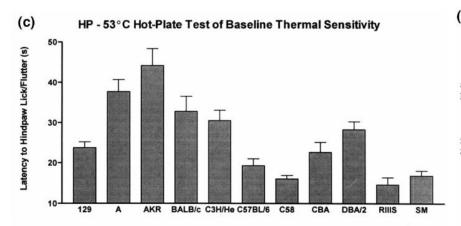
Galef & Jeimy (2004) Animal Behav

Effect of Indirect Communication

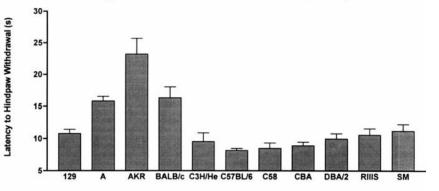
Is there indirect transmission of anxiety among animals?

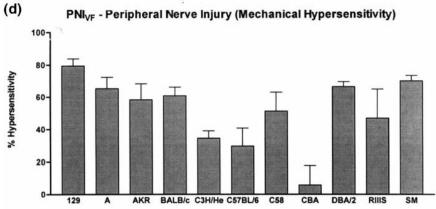
The exposure to samples of volatiles taken from the air during noxious stimulation of an animal, affects the exploratory behavior of a second animal.

Inagaki et al (2014) PNAS

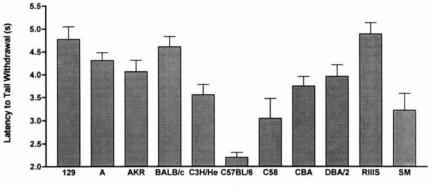


Caution # 3


Test the reproducibility of the results repeat tests under various conditions, with various groups of animals, with various experimenters.



Effects of Genotype Analysis of 11 mouse strains in pain response tests



TW - 49°C Tail-Withdrawal Test of Baseline Thermal Sensitivity

Mogil et al (1999) Pain

Effects of Genotype

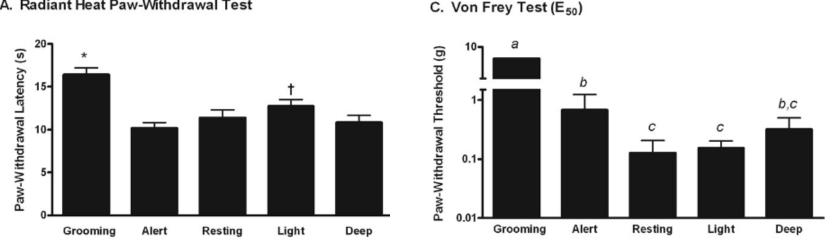
How different genotypes may explain pain testing variability?

- Characteristics of peripheral nerve transmission?
- Characteristics of central nervous transmission?
- Differences in anxiety?
- Cognitive differences: learning, memory, attention?
- Differences in the organization of the social hierarchy?

Effect of Animal Behavioral State "Behavioral State" is the overall level of awareness

Figure 1. Prototypical appearance of mice in 5 behavioral states. From top to bottom: Grooming, Alert, Resting, Light Sleep, Deep Sleep.

Table 1. Percentage Agreement and Confidence of Behavioral State Coding Among Observers


Behavioral State	% Agreement*	Confidencet
Deep sleep	94.3	4.7 ± 0.1
Light sleep	88.0	4.1 ± 0.1
Resting	72.5	4.0 ± 0.2
Alert	81.5	4.3 ± 0.2
Grooming	93.3	4.9 ± 0.04
Locomotion/exploring	95.6	4.7 ± 0.1

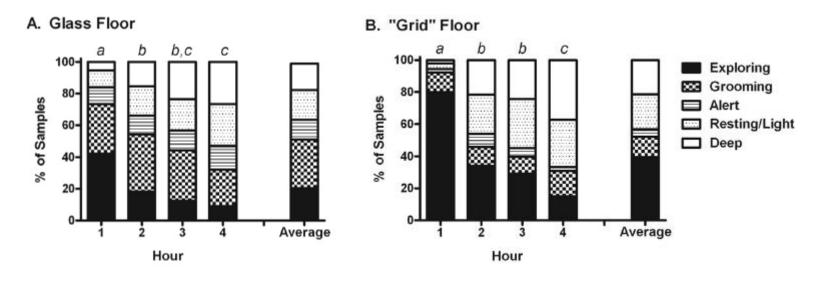
*For each measurement (n = 5) on each mouse (n = 12), the percentage agreement among the 5 observers was calculated; 100% = all in agreement; 80% = 4 of 5 in agreement; 60% = 3 of 5 in agreement. In only 1 case, was there less than 3 of 5 in agreement.

 \pm 1 Mean (\pm SEM) confidence of the coded behavioral state, on a scale from 1 (no confidence) to 5 (full confidence).

Effect of Animal Behavioral State Does it affect pain scores?

A. Radiant Heat Paw-Withdrawal Test

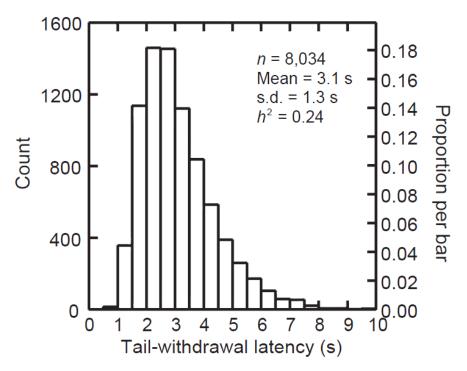
Grooming has a strong analgesic effect ("painkiller")


Is grooming analgesic because of a neurobiological mechanism (calming effect that releases endorphins, tactile stimulation of sensory fibers, etc), or simply because it alters the latency of motor response?

Callahan, Gil, Levesque & Mogil (2008) Journal of Pain

Effect of Animal Behavioral State

Laboratory conditions affect behavioral state?



Testing conditions alter the behavioral state of the animal (grooming is reduced while the animal is in a cage with metal grid floors).

Callahan, Gil, Levesque & Mogil (2008) Journal of Pain

Experimental variability


Fig. 1. Frequency histogram of responses on the 49°C tail-withdrawal assay of 8,034 mice tested from 1993 to 2001. Mice were individually removed from their home cage and introduced to a cloth/cardboard 'pocket', which they freely entered. Thus lightly restrained, the distal half of its tail was immersed in water thermostatically controlled at 49 ± 0.2 °C. Latency to a vigorous, reflexive tail withdrawal was measured to the nearest 0.1 s with a handheld stopwatch. Jeffrey Mogil decided to compile data from 8034 thermal nociceptive stimulation tests conducted in the laboratory over 8 years.

He observed a large variability of results (more than 25% of the animals had latency times that were very distant from the average)

Chesler (...) & Mogil (2002) Nature Neuroscience

Experimental variability

Fig. 1. Frequency histogram of responses on the 49°C tail-withdrawal assay of 8,034 mice tested from 1993 to 2001. Mice were individually removed from their home cage and introduced to a cloth/cardboard 'pocket', which they freely entered. Thus lightly restrained, the distal half of its tail was immersed in water thermostatically controlled at 49 ± 0.2 °C. Latency to a vigorous, reflexive tail withdrawal was measured to the nearest 0.1 s with a handheld stopwatch. He tested if that experimental variability was correlated with uncontrolled factors of the experimental protocol:

- Hour of testing time
- Day of the year
- Investigator
- Humidity in the room
- Number animals / box
- Order test
- Sex of animals
- Genotype of animals

Chesler (...) & Mogil (2002) Nature Neuroscience

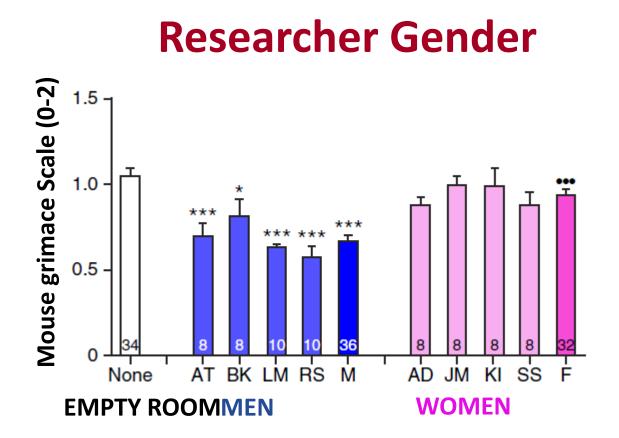
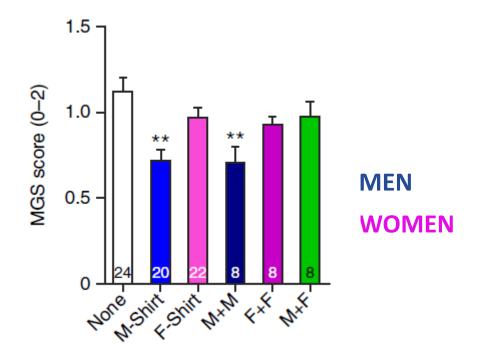

Experimental variability

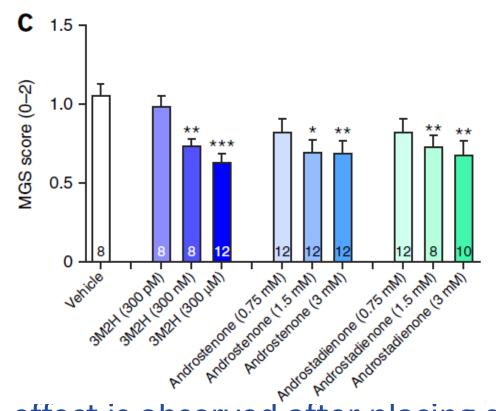
Table 1. Factor importance rankings computed by CART.				
Factor ^a	Number of factor levels	Score ^b		
Experimenter	11	100.0		
Genotype	40	78.0		
Season	4	35.8		
Cage density	7	20.4		
Time of day	3°	17.4		
Sex	2	14.6		
Humidity	4 ^d	12.0		
Order of testing	7	8.7		

The effect **"researcher"** is a larger cause of experimental variability than the genotype or the sex of the animals (even among researchers from the same laboratory trained by the same persons).

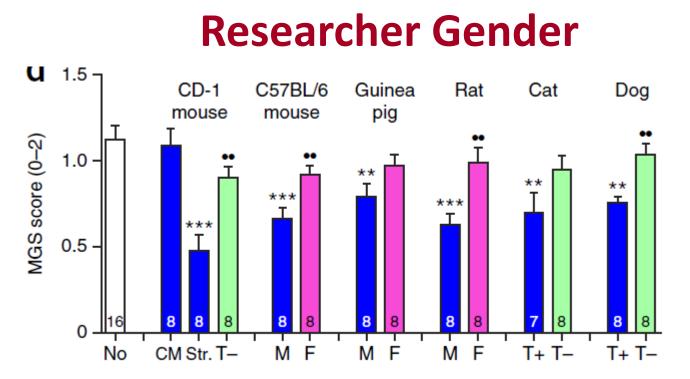
Chesler (...) & Mogil (2002) Nature Neuroscience



The presence of MALE researchers within half meter from the animal cage, alters pain response after injection of Zymozan ("analgesic" effect is rated by facial expression - Mouse Grimace Scale) in male and female mice. Sorge..., Mogil (2014) Nature Methods

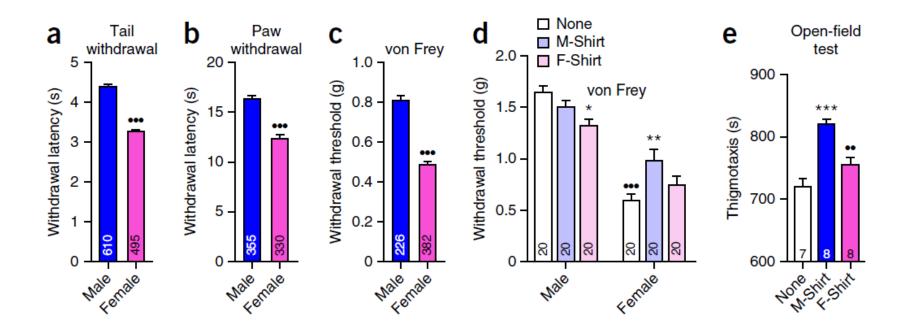

Researcher Gender

The introduction of a previously used t-shirt by a male researcher, placed half a meter from the testing cage, reduces pain response ("analgesic" effect).



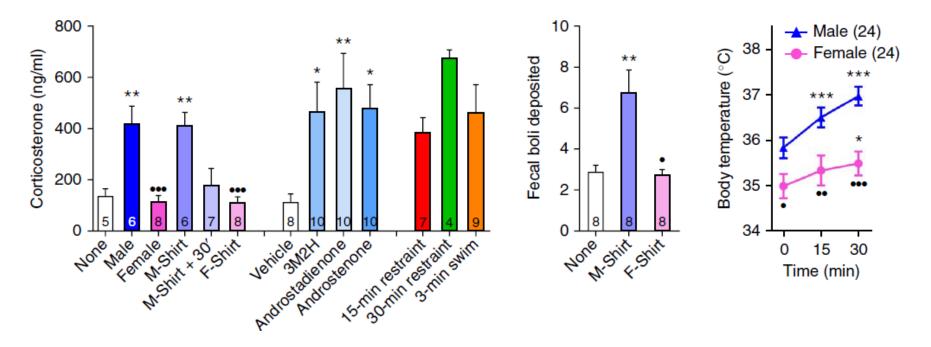
Researcher Gender

The same effect is observed after placing sponges impregnated with male volatile compounds.



... or after placing "*bedding*" exposed to other males, either mice or other species.

"*Bedding*" exposed to castrated animals (T) or "cagemates"(CM), did not affect the pain response.

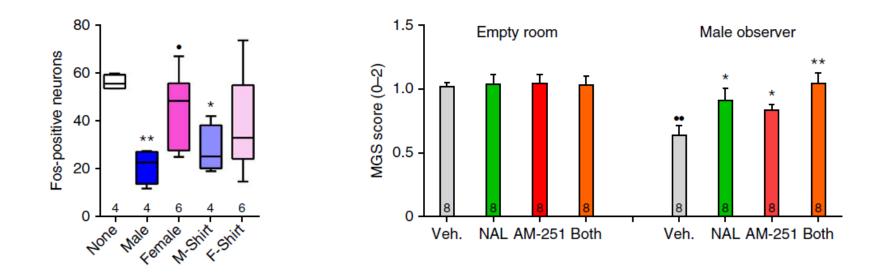

Researcher Gender

This "analgesic" effect is observed in several tests of nociception.

Effect on stress indicators

This "analgesic" effect is accompanied by an increase in stress indicators.

Evaluation of Animal Behavior: Problems and Pitfalls Clara Monteiro


What is the effect of stress in pain testing?

We have seen that stress immobilizes the animals ... Is the analgesic effect of stress just an experimental artifact: decreased motor response / divided attention?

or is there a modulation of the nociceptive system during periods of stress?

Stress Induced Analgesia

The "analgesic" effect also affects the expression of c-fos spinal cord and is reversed by administration of blockers of opioid receptors (naloxone) and CB1 receptors (AM-251).

Evaluation of Animal Behavior: Problems and Pitfalls

Clara Monteiro

Table 1

On the other hand there is also Stress Induced Hyperalgesia

ipedes, sex and strain	Frequency/duration	Pain test	Pain behaviour observations	Reference
orced swim-stress				
dale Sprague-Dawley rats	Day 1: 10min	Formalin test and hot plate test	Inflammatory and thermal hyperalgesia	Quintero et al. (2011, 2003, 2000), Suarez- Roca et al. (2008), and Suarez-Roca et al.
	Day 2-3: 20min	Carrageenan intra-muscular injection followed by grip	Mechanical hyperalgesia as determined by reduced grip	(2006a,b) Suarez-Roca et al. (2006a)
fale Swiss albino mice	Two swim stress sessions	strength Hot plate	strength Thermal hyperalgesia	Suaudeau and
fale Wistar rats	6 min duration, 8 h apart 5 min sessions daily for 5 days	Tail flick test	Thermal hyperalgesia	Costentin (2000) Fereidoni et al. (2007)
dult male and female Swiss Webster mice	5, 15 or 30min or 15 min for 2 days	Tail flick test and grip strength	Thermal and mechanical hyperalgesia	Abdelhamid et al. (2013a,b)
tale al bino mice	6 min sessions daily for 15 days	Tail immersion test	Thermal hyperalgesia	Dhir and Kulkarni (2008)
epeated cold stress/SART				
tale 4-week old ddY mice	Over 7 days: Alternating 24 °C/4°C every hour for 7 h; 4 °C for final 17h	Randall-Selitto apparatus	Mechanical hyperalgesia (days 5–7)	Ohara et al. (1991)
fale Sprague-Dawley rats	Over 5 days: Alternating 24 °C/4°C or -3°C every 30m in for 7½h; 4°C/-3°C for final 16% h	Randall-Selitto test and the von Frey hair test	Mechanical hyperalgesia (greater in -3°C group than 4°C group)	Nasu et al. (2010)
fale Wistar Rats	Over 5 days: Alternating 24 °C/-3°C every hour for 4 h; -3°C for remaining 20h	Randall-Selitto test	Mechanical hyperalgesia	Fujisawa et al. (2008)
dale Wistar rats	4 h; -3 °C for remaining 20h Over 5 days: Alternating 24°C/-3°C every 2h for 6h; -3 °C for remaining 18 h	Footshock on one of two floors	Decreased escape latency	Kawanishi et al. (1997)
estraint stress fale and female (mixed estrous phases) Wistar rats	Daily 1 h restraint for 40 days	Tail flick test	Thermal hyperalgesia in males, no effect in females	Gamaro et al. (1998)
fale Wistar rats	Acute: 15min, 30min or 1 h restraint Subchronic: 1 h restraint for 3 days Chronic: 1 h daily, 5 days per week for 40 days	Formalin injection into the temporomandibular joint (TMJ)	Increased inflammatory pain in chronic restraint stress rats	Gameiro et al. (2006)
fale Sprague-Dawley rats	Daily 1 h restraint for 4 days over for 5 weeks	von Frey, Randall-Selitto, tail immersion test, acetone- induced cold allodynia, formalin test	Inflammatory, thermal and mechanical hyperalgesia	Bardin et al. (2009)
dult male Wistar rats	1 h daily restraints for 5 days per week over 8 weeks	Tail flick test ^a Formalin injection into TMJ ^b	Thermal and inflammatory hyperalgesia	da Silva Torres et al. (2003) ^a and Gameiro et al. (2005) ^b
fale Sprague-Dawley rats	6 h restraint once or over 1, 2 or 3 weeks	Tail flick test	Thermal hyperalgesia following 2 and 3 week restraint	Imbe et al. (2004)
fale Sprague ^a Dawley rats fale and female Wistar rats ^b	Acute restraint for 2 h in restraint cage	Colorectal distension	restraint Visceral hyperalgesia	Ohashi-Doi et al. (2010) ^a and Eutamene et al. (2010) ^b
tale Sprague Dawley rats tale Wistar rats	2 h restraint stress 4 days 1 h restraint 5 days a week for 11 weeks	Colorectal distension von Frey Test and hot plate	Visceral hyperalgesia Mechanical allodynia and thermal hyperalgesia	Shen et al. (2010) Spezia Adachi et al. (2012)
nmobilisation stress dult male Sprague Dawley rats	90min daily for 7 days	Tail-Flick test	Thermal hyperalgesia	Costa et al. (2005)
tale ICR mice	1 h daily for 5 days	Formalin test	Inflammatory hyperalgesia	Seo et al. (2006)
ocial defeat fale Sprague-Dawley rats (Long Evans rats as intruder)	Four daily intruder sessions divided into two periods (see above)	von Frey, Randall-Selitto test and formal in test	Mechanical and inflammatory hyperalgesia	Rivat et al. (2010)
ale Long Evans rats	two periods (see above) Resident rats were vasectomised prior to testing. Hwe daily intruder sessions divided into two periods (see above)	Formalin test Formalin test ^a , thermal preference and thermal escape tests ^b	Inflammatory nyperagesia Inflammatory and thermal hyperalgesia	Andre et al. (2005) ^a and Marcinkiewcz et al. (2009) ^b
later avoidance fale Wistar rats	1 h per day for 10 consecutive days	Colorectal distension	Visceral hyperalgesia	Bradesi et al. (2006, 2007, 2009, 2005), Larauche et al. (2008)
fale Sprague-Dawley rats	1 h per day for 10 consecutive days	von Frey test ^a , colorectal distension ^b	Mechanical and visceral hyperalgesia	and Wang et al. (2013) Chen et al. (2011) ^a and Green et al. (2011ab)
idult male C57Bl/6 mice	1 h per day for 10 consecutive days	distension" Colorectal distension	hyperalgesia Visceral hyperalgesia	Green et al. (2011ab) Hong et al. (2009) and Larauche et al. (2010)

Species, sex and strain	Prequency/duration	Pain test	Pain behaviour observations	Reference
Male Sprague-Dawley rats	Over three days: tones played over four frequencies over 30m in time period	Randall Selitto test ^a , colorectal distension ^b	Mechanical and visceral hyperalgesia	Khasar et al. (2009, 2005) ^a and Green et (2011ab) ^b
Chronic mild stress Male Wistar rats	Unpredictable Chronic stress for 6 weeks;	von Brey and hot plate in normal and complete Preund's adjuvant chronic pain rat model and formalin text	Increased mechanical and thermal thresholds and inflammatory hyperalgesia	Shi et al. (2010a)
Male Wistar rats	Unpredictable chronic stress for 6 weeks	test Hot plate and von Prey tests in naive and SNL rats	Increased thermal and inflammatory pain thresholds for both normal and SNL rats	Shi et al. (2010b)
Rotation stress Male CBAJ mice	Rotational movement in spinning cages at 45 rpm for 10min every hour daily for 2 weeks	Formalin test	inflammatory hyperalgesia	Boccalon et al. (200
Maternal separation/Deprivati	on/Early life stress			
Wistar male rats ^a Sprague Dawley ^b male rats	Pups separated from mother for 180 min from days 2 to 14	Colorectal distension	Visceral hyperalgesia	Chung et al. (2007a,) and Zhang et al. (2009a,b, 2008) ^b
long-Evans rats	Pups separated from mother for 180 min from days 2 to 14	Colorectal distension	Visceral hyperalgesia	van den Wijngaard et al. (2012), Woute et al. (2012) and
Wistar male and female rats	24 h MD on PND 9	Hot Plate, von Frey, acetone test and prior to and after spinal nerve ligation	Thermal hypoalgesia, mechanical allodynia in females	Welting et al. (2005 Burke et al. (2013)
Sprague-Dawley rats	Mother and pups are placed in cages fitted with a stainless steel mesh bottom on post-natal day 2-9	Digital force transducer	Mechanical hyperalgesia	Alvarez et al. (2013) and Green et al. (2011 ab)
Noise stress Male Sprague-Dawley rats	105 dB tone of mixed frequencies, ranging from 11 to 19kHz over 30 min over 3-4 days	Paw-withdrawal threshold	Enhanced inflammatory pain	Khasar et al. (2009, 2005)
Vibration stress Male and female Wistar rats	4Hz applied to restraint tube for 5 min	Tail flick test	Hyperalgesia developed at 2- 10 min after stress in male rats. Ther mal hyperalgesia and female responding was oestrus dependent	Devall et al. (2009) at Devall and Lovick (2010)
Whisker pad stimulation				
Male Sprague-Dawley rats	light tactile whisker pad stimulation: 10 applications/session, 4 sessions/h in 1 day, sessions on days 1–5 and 8–12	von Bey test	Mechanical hyperalgesia	Reynolds et al. (2011
Air stress				
Male Sprague-Dawley rats	Continuous stream of air at room temperature was directed at the face for 30 min	von Brey test	Mechanical hyperalgesia	Wagner et al. (2013
PTSD model				
Male Sprague-Dawley rats	2h restraint, 20 min swim followed by 15 min rest, inhalation of an ether until unconscious	von Prey test and paw withdrawal to heat stimulus	Mechanical allodyina and thermal hyperalgesia	Zhang et al. (2012)
Male Sprague-Dawley rats	2h restraint, 20 min swim followed by 15 min rest, inhalation of an ether until unconscious then footshock when conscious	Colorectal distension	Visceral hyperalgesia	He et al. (2013)

Jennings, Okine, Roche & Finn (2014) Progress in Neurobiology

Afterall, is stress hypoalgesic or hyperalgesic?

What is currently accepted is that situations of **acute and unpredictable stress** have an analgesic effect on nociceptive tests.

On the other hand, situations of **chronic and predictable stress** have an hyperalgesic effect in nociceptive tests.

This experimenter-related effect of stress also alters other behavioral tests?

Most certainly yes...

The effect of stress on cognitive and attentional performance is well documented, with sometimes opposite effects depending on the predictable or unpredictable nature of the stressor

Is there indirect transmission of anxiety in human experiments?

Chem. Senses 36: 19-27, 2011

doi:10.1093/chemse/bjq087 Advance Access publication October 7, 2010

Smelling Chemosensory Signals of Males in Anxious Versus Nonanxious Condition Increases State Anxiety of Female Subjects

Jessica Albrecht^{1,*}, Maria Demmel^{1,*}, Veronika Schöpf¹, Anna Maria Kleemann¹, Rainer Kopietz¹, Johanna May¹, Tatjana Schreder¹, Rebekka Zernecke¹, Hartmut Brückmann¹ and Martin Wiesmann^{1,2}

¹Department of Neuroradiology, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81377 Munich, Germany and ²Department of Diagnostic and Interventional Neuroradiology, Rheinisch-Westfälische Technische Hochschule Aachen, Pauwelstr. 30, 52074 Aachen, Germany

Is there indirect transmission of anxiety in human experiments?

Figure 2 State anxiety scores during neutral and anxiety condition after 5 and 20 min of odor exposure (n = 20). State anxiety differed significantly between neutral and anxiety condition after 20 min but not after 5 min of odor exposure (*P < 0.05).

Figure 1 Subject during anxiety odor donation session.

Albrecht et al (2011) Chem Senses

Take-Home Messages

Repeat, Repeat, Repeat

Observe, Observe, Observe

Question, Question, Question

Evaluation of Animal Behavior: Problems and Pitfalls

focus on pain research

Clara Monteiro

Departmento de Biomedicina Faculdade de Medicina da Universidade do Porto

PDN – Maio de 2023