

Materials Properties and Applications

Melting, crystallization, and glass transition in polymers

The Puzzle of Glass

José C. S. Costa

Assistant Researcher, Department of Chemistry and Biochemistry, University of Porto – 2022

E-mail: jose.costa@fc.up.pt

Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC)

Types of DSC calorimeters

(a) heat-flux calorimeter; (b) power compensation calorimeter.

Polymers: DSC thermograms

Polyethylene terephthalate (or poly(ethylene OH terephthalate), **PET** or **PETE**, is the most Ο Ο common thermoplastic polymer resin of the polyester family! ⊔ n Polyethylene terephthalate, PET, 23.1600 mg mW **Cold crystallization** 870.5 mJ Integral 37.6 Jg^-1 normalized 149.9 °C Peak 0 **Glass transition** -929.70 mJ Integral -40.14 Jg^-1 normalized 248.4 °C -5 Peak **Glass Transition** -10-Onset 80.17 °C Midpoint 79.26 °C **Heating Rate** 10.00 °Cmin^-1 Midpoint ASTM, IEC 80.55 °C -15-Midpoint Richardson 71.50 °C Delta cp ASTM, IEC 0.333 Ja^-1K^-1 **Delta cp Richardson** 0.344 Jg^-1K^-1 Melting 200 220 280 40 60 80 100 120 140 160 180 240 260 °C

Polymers: glass transition

Glass Transition Temp. Measurements of Different Polymers Using DSC (Source: Mettler-Toledo Analytical)

Polymers: glass transition

Polymers: glass transition

Polymer	Tg (°C)	Tm (°C)	ΔH_m (J/g)
PET	70 to 80	250 to 260	140
LDPE	<-100	100 to 110	140
PVC	80 to 84	-	-
PP	-30 to -20	160 to 165	207 to 209
PS	90 to 105	-	-
HDPE	<-100	125 to 135	293
ABS	-63 to 127	-	-
PC	145	-	-
PMMA	100 to 115	-	-
PA6	50 to 80	225 to 235	190 to 230
PA66	70 to 90	225 to 265	185
PA610	50 to 80	210 to 230	117 to 227
POM	-85 to -75	175 to 790	316 to 335
PBT	45 to 60	220 to 230	142

PET: $T_{\rm g}/T_{\rm m} = 0.66$
PA6: $T_{\rm g}/T_{\rm m} = 0.65$
PA66: $T_{\rm g}/T_{\rm m} = 0.69$
PA610: $T_{\rm g}/T_{\rm m} = 0.67$
PBT: $T_{\rm g}/T_{\rm m} = 0.65$
$T_{\rm g}/T_{\rm m}\cong 2/3$

T values in Kelvin

Case study: melting & glass transition

Fig. 1 DSC curves of *m*-MTDATA.

Case study: melting & glass transition

α-TPTAB

J. Mater. Chem., 2000, 10, 1-25

Materials Properties and Applications

Melting, crystallization, and glass transition in polymers

The Puzzle of Glass

José C. S. Costa

Assistant Researcher, Department of Chemistry and Biochemistry, University of Porto – 2022

E-mail: jose.costa@fc.up.pt