+ + + + + + + + + + + + + + +

CIM Sampling, Reconstruction, and Aliasing Review of Complex Exponentials and Fourier

- Analysis
- + + + + + + + + + + + + +
- + + + + + + + + + + + + + +
- + + + + + + + + + + + + + + + +

Digital Signal Processing System

Pre-requisite Theory

- Complex exponentials
- Continuous-time Fourier transform
 - properties
 - important Fourier transform pairs

The Fourier Transform

Inverse Fourier
transform
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
Complex, continuous, aperiodic
 $-\infty < t < \infty$
Complex, continuous, aperiodic
 $-\infty < t < \infty$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
Complex, continuous, aperiodic
 $-\infty < \omega < \infty$

Complex exponentials are a fundamental part of Fourier analysis and frequency domain representation of signals.

Complex Exponentials

Complex exponential $Ae^{-j\omega_0 t}$ represented in three different ways

arr

Complex Exponentials

Complex exponential $Ae^{-j\omega_0 t}$ represented in three different ways

Real-valued Cosine

Real-valued sinusoid $A \cos(\omega_0 t) = \frac{A}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$ represented in three different ways

arr

Real-valued Sine

Real-valued sinusoid $A \sin(\omega_0 t) = \frac{A}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right)$ esented in three different ways

Fourier Transform of an Impulse

$$x(t) = \delta(t)$$
$$X(\omega) = \int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt$$

d(t) is zero for $t \neq 0$, and over an infinitesimal interval of time around t = 0 (for which the complex exponential term is equal to 1), its integral with respect to time is equal to unity, and hence

9 © 2019 Arm Limited

Fourier Transform of a Constant

The inverse Fourier transform of a constant is equal to an impulse.

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega$$

Substitute – ω for and for ω

An impulse in the frequency domain

 $\delta(-\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-jt\omega} dt$

The Fourier transform of unity in the time domain

This is an example of the duality property of the FT.

Duality Property

If
$$X(\omega) = F\{x(t)\}$$

then $x(-\omega) = \frac{1}{2\pi}F\{X(t)\}$

Fourier Transform of a Rectangular Pulse

orn

sinc Function

Normalized sinc function

sinc
$$(x) = \frac{\sin(\pi x)}{\pi x}$$

Un-normalized sinc function

sinc
$$(x) = \frac{\sin(x)}{x}$$

Fourier Transform of a sinc Function

Using the duality property and the previous result,

Scaling Property of the Fourier Transform

If
$$G(\omega) = F\left\{g(t)\right\}$$

arm

Widening a function in one domain corresponds to narrowing its representation in the other.

Frequency Shifting Property

if
$$G(\omega) = F\{g(t)\}$$

then $F\{g(t)e^{j\omega_0 t}\} = G(\omega - \omega_0)$

Multiplication of a time-domain function by a complex exponential shifts its frequency domain representation along the frequency axis.

Convolution Property

If
$$G_1(\omega) = F\left\{g_1(t)\right\}$$

and $G_2(\omega) = F\left\{g_2(t)\right\}$

then
$$F \{g_1(t) * g_2(t)\} = G_1(\omega)G_2(\omega)$$

and $F \{2\pi g_1(t)g_2(t)\} = G_1(\omega) * G_2(\omega)$

Convolution in the time-domain is equivalent to multiplication in the frequency-domain.

17 © 2019 Arm Limited

Fourier Transform of a Sinusoid

$$x(t) = A \cos(\omega_0 t) = \frac{A}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

Use the frequency shifting property

and the previous result that

 $F\left\{g\left(t\right)e^{j\omega_{0}t}\right\} = G\left(\omega - \omega_{0}\right)$ $F\left\{1\right\} = 2\pi\delta\left(\omega\right)$

orn

Even and Odd Functions

Even function f(x) = f(-x)

Odd function f(x) = -f(-x)

| <i>x(t)</i> | Χ(ω) |
|----------------------|----------------------|
| Real-valued and even | Real-valued and even |
| Real-valued and odd | Imaginary and odd |
| Imaginary and even | Imaginary and even |
| Imaginary and odd | Real-valued and odd |

Fourier Transform of an Impulse Train

An infinite train of impulses in the time-domain

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_s)$$

(sometimes known as the Shah function) is interesting because (allowing for scaling) its Fourier transform is itself,

$$X(\omega) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_s) \qquad \omega_s = \frac{2\pi}{T_s}$$

Or

i.e., an infinite train of impulses in the frequency domain.

The Fourier transform of an infinite train of impulses in the time-domain is an infinite train of impulses in the frequency-domain.